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Delta Functions:
∫

ϕ(x)δ(x − x′) dx = ϕ(x′) ,

∫

ϕ(#r )δ3(#r − #r ′) d3x = ϕ(#r ′)
∫

d dϕ
ϕ(x) δ(x − x′) dx =

dx
−
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r3 3
3(#d · r̂)r̂ − #d 4π∇×# =
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− #d

3
×∇# δ3(#r )

Electrostatics:
#F = #qE , where

1 ∑ (#r − #r ′) q#E(#r ) = i 1
4πε0 i |#r − #r ′|3

=
4πε0

∫
(#r − #r ′)

ρ(#r ′) d3x
| 3

′

#r − #r ′|
ε0 =permittivity of free space = 8.854 × 10−12 C2/(N·m2)

1
= 8.988 109 N m2/C2

4πε0
× ·
∫ !r 1

∫
ρ(#r ′)

V (#r ) = V ( ##r 0) − E(#r ′) · d#(′ = d3x′

!r 0
4πε0 |#r − #r ′|

ρ∇ ·# #E = # # # #, E
ε0

∇× = 0 , E = −∇V

∇2 ρ
V = − (Poisson’s Eq.) , ρ = 0 =⇒ ∇2V = 0 (Laplace’s Eq.)

ε0
Laplacian Mean Value Theorem (no generally accepted name): If ∇2V = 0, then

the average value of V on a spherical surface equals its value at the center.

Energy:
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Conductors:
σ

Just outside, "E = n̂
ε0

Pressure on surface: 1σ2 | "E|outside

Two-conductor system with charges Q and −Q: Q = CV , W = 1CV 2
2

N isolated conductors:

Vi =
∑

PijQj , Pij = elastance matrix, or reciprocal capacitance matrix
j

Qi =
∑

CijVj , Cij = capacitance matrix
j

a a2

Image charge in sphere of radius a: Image of Q at R is q = − Q, r =
R R

Separation of Variables for Laplace’s Equation in Cartesian Coordinates:

{

cos αx
}{

cos βy
}{

cosh γz
V = sin αx sin βy sinh γz

}

where γ2 = α2 + β2

Separation of Variables for Laplace’s Equation in Spherical Coordinates:

Traceless Symmetric Tensor expansion:

∇2 1 ∂ ∂ϕ 1
ϕ(r, θ, φ) =

2 ∂r

(

r2

∂r

)

+
r r2

∇2
θ ϕ = 0 ,

where the angular part is given by
2

2 1 ∂ ∂ϕ 1 ∂ ϕ∇θ ϕ ≡ sin θ +
sin θ ∂θ

(

∂θ

)

sin2 θ ∂φ2

∇2 (") ˆ ˆ (")
θ Ci 2...i ni! 1ni1i 2 . . . n̂i! = −+(+ + 1)Ci1i2...i n̂i1 n̂i! 2 . . . n̂i! ,

where (")Ci1i2...i!
is a symmetric traceless tensor and

n̂ = sin θ cos φ ê1 + sin θ sin φ ê2 + cos θ ê3 .

General solution to Laplace’s equation:
∞ ")

( ) =
∑

(

(") C′(
" + i1i2...iV "r Ci ...i r !

i

)

ri1 2 !
ˆ

r"+1 1 r̂i2 . . . r̂i! , where "r = rr̂
"=0

Capacitance
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Electric Fields in Matter:

Electric Dipoles:

!p =
∫

d3x ρ(!r )!r

ρdip(!r ) = −p! ·∇! !r δ3(!r − !rd) , where !rd = position of dipole
!F = (p! ·∇! ) !E = ∇! (p! · !E) (force on a dipole)
! = !p × !E (torque on a dipole)
U = −p! · !E

Electrically Polarizable Materials:
!P (!r ) = polarization = electric dipole moment per unit volume
ρbound = −∇ · !P , σ = !

bound P · n̂
!D ≡ ! ! ! ! ! !ε0E + P , ∇ · D = ρfree , ∇× E = 0 (for statics)

Boundary conditions:
σ

Eab
⊥

ove − Ebe
⊥

low = Dab
⊥

ove − Dbe
⊥

low = σfree
ε0

!E‖ ‖ ! ‖ !
ab − ! !

ove E‖
below = 0 !D‖ ‖

above − Dbelow = Pabove − Pbelow

Linear Dielectrics:
!P = !ε0χeE, χe = electric susceptibility
ε ≡ ε0(1 + χe) = permittivity, !D = !εE

ε
εr = = 1 + χe = relative permittivity, or dielectric constant

ε0

Nα/ε
Clausius-Mossotti equation: 0χe = ,Nα where N = number density of atoms

1 − 3ε0

or (nonpolar) molecules, α = atomic/molecular polarizability (!P = !αE)
1

Energy: W =
2

∫

!D · !E d3x (linear materials only)

Force on a dielectric: !F = −∇! W (Even if one or more potential differences are
held fixed, the force can be found by computing the gradient with the total
charge on each conductor fixed.)

Magnetostatics:

Magnetic Force:
dp! 1! = ( ! + × !F q E !v B) = , where p! = γm0!v , γ =
dt

√

1 − v2

c2
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! ! ! ! !F =
∫

Id" × B =
∫

J × B d3x

Current Density:

Current through a surface S: IS =
∫

!J · d!a
S

∂ρ
Charge conservation: =

∂t
−∇ ·! !J

Moving density of charge: !J = ρ!v

Biot-Savart Law:

!µ r ′) !
! ( 0

∫
d"′ × (!r − ! µ

) = = 0
∫

K(!r ′) (!r !r ′)
B !r I

4π |3
× −

da′
|!r − !r ′ 4π |!r − !r ′|3

µ
= 0

∫ !J(!r ′) × (!r − !r ′)
d3x

4π |!r − !r ′|3

where µ0 = permeability of free space ≡ 4π × 10−7 N/A2

Examples:
µ I

Infinitely long straight wire: !B = 0
φ̂

2πr

Infinitely long tightly wound solenoid: !B = µ0nI0 ẑ , where n = turns per
unit length

µ IR2

Loop of current on axis: !B(0, 0, z) = 0
ẑ

2(z2 + R2)3/2

1
Infinite current sheet: !B(!r ) = !µ0K × n̂ , n̂ = unit normal toward !r

2
Vector Potential:

µ (!r ′
!A(r ) = 0

∫ !J )
! d3 ′ , ! = ∇×! !

coul x B A , ∇ ·! !A
4π |!r − !r ′| coul = 0

∇ ·! !B = 0 (Subject to modification if magnetic monopoles are discovered)

Gauge Transformations: !A′( ! ! ! ! !!r ) = A(!r ) + ∇Λ(!r ) for any Λ(!r ). B = ∇ × A is
unchanged.

Ampère’s Law:

∇×! !B = !µ0J , or equivalently
∫

!B
P

· d!" = µ0Ienc
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ẑ

2(z2 + R2)3/2

1
Infinite current sheet: !B(!r ) = !µ0K × n̂ , n̂ = unit normal toward !r

2
Vector Potential:

µ (!r ′
!A(r ) = 0

∫ !J )
! d3 ′ , ! = ∇×! !

coul x B A , ∇ ·! !A
4π |!r − !r ′| coul = 0

∇ ·! !B = 0 (Subject to modification if magnetic monopoles are discovered)

Gauge Transformations: !A′( ! ! ! ! !!r ) = A(!r ) + ∇Λ(!r ) for any Λ(!r ). B = ∇ × A is
unchanged.

Ampère’s Law:

∇×! !B = !µ0J , or equivalently
∫

!B
P

· d!" = µ0Ienc

8.07 FORMULA SHEET FOR FINAL EXAM, FALL 2012 p. 7

! ! ! ! !F =
∫

Id" × B =
∫

J × B d3x

Current Density:

Current through a surface S: IS =
∫

!J · d!a
S

∂ρ
Charge conservation: =

∂t
−∇ ·! !J

Moving density of charge: !J = ρ!v

Biot-Savart Law:

!µ r ′) !
! ( 0

∫
d"′ × (!r − ! µ

) = = 0
∫

K(!r ′) (!r !r ′)
B !r I

4π |3
× −

da′
|!r − !r ′ 4π |!r − !r ′|3

µ
= 0

∫ !J(!r ′) × (!r − !r ′)
d3x

4π |!r − !r ′|3

where µ0 = permeability of free space ≡ 4π × 10−7 N/A2

Examples:
µ I

Infinitely long straight wire: !B = 0
φ̂

2πr

Infinitely long tightly wound solenoid: !B = µ0nI0 ẑ , where n = turns per
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  Preliminary Examination - page 9 
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MAGNETOSTATICS  
 
Relative permeability:  
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Infinitely long solenoid: B-field inside is 0B nIµ=  (n is number of turns per unit length) 

 

Ampere’s law:  0 encld Iµ⋅ =∫ Bv l  

Magnetic dipole moment of a current distribution is given by I d= ∫m a  

Force on magnetic dipole:  ( )= ⋅F m B∇   

Torque on magnetic dipole:  = ×τ m B   

B-field of magnetic dipole:  0
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r m r m
B r  
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Maxwell’s Equations in vacuum 

0

0 0 0

’

’

1. Gauss  Law
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3. Faraday s L
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∂

∂
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∂
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∇

∇

∇

∇

 

160 Chapter 3 Potentials 

Problem 3.33 A "pure" dipole p is situated at the origin, pointing in the z direction. 

(a) What is the force on a point charge q at (a, 0, 0) (Cartesian coordinates)? 

(b) What is the force on q at (0, 0, a)? 

(c) How much work does it take to move q from (a, 0, 0) to (0, 0, a)? 

Problem 3.34 Three point charges are located as shown in Fig. 3.38, each a distance 
a from the origin. Find the approximate electric field at points far from the origin. 
Express your answer in spherical coordinates, and include the two lowest orders in 
the multipole expansion. 

z 

y 

X 

FIGURE3.38 

Problem 3.35 A solid sphere, radius R, is centered at the origin. The "northern" 
hemisphere carries a uniform charge density p0 , and the "southern" hemisphere a 
uniform charge density - p0 • Find the approximate field E(r, 0) for points far from 
the sphere (r » R). 

• Problem 3.36 Show that the electric field of a (perfect) dipole (Eq. 3.103) can be 
written in the coordinate-free form 

1 1 A A 

Edi (r) = -- [3(p · r)r- p]. 
P 4Jl'Eo r 3 (3.104) 

More Problems on Chapter 3 

Problem 3.37 In Section 3.1.4, I proved that the electrostatic potential at any point 
P in a charge-free region is equal to its average value over any spherical surface 
(radius R) centered at P. Here's an alternative argument that does not rely on 
Coulomb's law, only on Laplace's equation. We might as well set the origin at P. 
Let Vave(R) be the average; first show that 

-- = -- VV·da dVave 1 f 
dR 4JrR2 

(note that the R2 in da cancels the 1/ R2 out front, so the only dependence on R 
is in V itself). Now use the divergence theorem, and conclude that if V satisfies 
Laplace's equation, then Vave(R) = Vave(O) = V(P), for all R. 18 

181 thank Ted Jacobson for suggesting this proof. 

 in conductors⃗E = 0

3.4 Multipole Expansion 155 

This integral (which does not depend on r) is called the dipole moment of the 
distribution: 

p = J r' p(r') dr', 

and the dipole contribution to the potential simplifies to 

1 P. r vdi (r) = ----. 
P 4nEo r 2 

(3.98) 

(3.99) 

The dipole moment is determined by the geometry (size, shape, and density) 
ofthe charge distribution. Equation 3.98 translates in the usual way (Sect. 2.1.4) 
for point, line, and surface charges. Thus, the dipole moment of a collection of 
point charges is 

n 

p = (3.100) 
i=l 

For a physical dipole (equal and opposite charges, ± q), 

p = - qr'_ = - r'_) = qd, (3.101) 

where dis the vector from the negative charge to the positive one (Fig. 3.29). 
Is this consistent with what we got in Ex. 3.10? Yes: If you put Eq. 3.101 into 

Eq. 3.99, you recover Eq. 3.90. Notice, however, that this is only the approximate 
potential of the physical dipole-evidently there are higher multipole contribu-
tions. Of course, as you go farther and farther away, V dip becomes a better and 
better approximation, since the higher terms die off more rapidly with increas-
ing r. By the same token, at a fixed r the dipole approximation improves as you 
shrink the separation d. To construct a perfect (point) dipole whose potential is 
given exactly by Eq. 3.99, you'd have to let d approach zero. Unfortunately, you 
then lose the dipole term too, unless you simultaneously arrange for q to go to in-
finity! A physical dipole becomes a pure dipole, then, in the rather artificial limit 
d--+ 0, q --+ oo, with the product qd = p held fixed. When someone uses the 
word "dipole," you can't always tell whether they mean a physical dipole (with 

+q 

y 
X 

FIGURE3.29 

8.07 FORMULA SHEET FOR FINAL EXAM, FALL 2012 p. 7

! ! ! ! !F =
∫

Id" × B =
∫

J × B d3x

Current Density:

Current through a surface S: IS =
∫

!J · d!a
S

∂ρ
Charge conservation: =

∂t
−∇ ·! !J

Moving density of charge: !J = ρ!v

Biot-Savart Law:

!µ r ′) !
! ( 0

∫
d"′ × (!r − ! µ

) = = 0
∫

K(!r ′) (!r !r ′)
B !r I

4π |3
× −

da′
|!r − !r ′ 4π |!r − !r ′|3

µ
= 0

∫ !J(!r ′) × (!r − !r ′)
d3x

4π |!r − !r ′|3

where µ0 = permeability of free space ≡ 4π × 10−7 N/A2

Examples:
µ I

Infinitely long straight wire: !B = 0
φ̂

2πr

Infinitely long tightly wound solenoid: !B = µ0nI0 ẑ , where n = turns per
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Infinite current sheet: !B(!r ) = !µ0K × n̂ , n̂ = unit normal toward !r

2
Vector Potential:

µ (!r ′
!A(r ) = 0

∫ !J )
! d3 ′ , ! = ∇×! !

coul x B A , ∇ ·! !A
4π |!r − !r ′| coul = 0

∇ ·! !B = 0 (Subject to modification if magnetic monopoles are discovered)

Gauge Transformations: !A′( ! ! ! ! !!r ) = A(!r ) + ∇Λ(!r ) for any Λ(!r ). B = ∇ × A is
unchanged.

Ampère’s Law:

∇×! !B = !µ0J , or equivalently
∫

!B
P

· d!" = µ0Ienc
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da′
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Magnetic Multipole Expansion:

Traceless Symmetric Tensor version:

µ
∞

r̂ . . . r̂
Aj(!) = 0 ( )r

∑
!

j;i1i2...i!

{ i

4
M i1 ! }

π r!+1
!=0

(!) (2#
where Mj i i d3

; ...i =
− 1)!!

∫

xJj1 2 !
(!r )

#!
{ xi1 . . . xi! }

Current conservation restriction:
∫

d3x Sym(xi1 . . . xi! J−1 i!) = 0
i1...i!

Symwhere means to symmetrize — i.e. average over all
i1...i!

orderings — in the indices i1 . . . i!
Special cases:

# = 1:
∫

d3x Ji = 0

# = 2:
∫

d3x (Jixj + Jjxi) = 0

µ
Leading term (dipole): !A(!r ) = 0 m! × r̂

,
4π r2

where
1

mi = − ε
2 ijkM(1)

j;k

1
m! = I

∫
1

!r × d!# =
∫

d3 !x!r
2 P 2

× J = I!a ,

where !a =
∫

d!a for any surface S spanning P
S

µ0 m! × r̂ µ m µ! !Bdip(!r ) = ∇× = 0 3(m! · r̂)r̂ − ! 2
+ 0

m δ! 3(!r )
4π r2 4π r3 3

∇ ·! ! ( ) = 0 ∇×! ! ( ) = ! ( ) = − ×∇!Bdip !r , Bdip !r µ0Jdip !r µ0m! δ3(!r )

Griffiths version:

µ!A(!r ) = 0I
∞ 1

(r′)!P (cos θ′
4 ! )d!#′
π

∑

r!+1
!=0

∮

Magnetic Fields in Matter:

Magnetic Dipoles:
1 1! !m! = I

∫

!r
P

× d# =
2

∫

d3x!r
2

× J = I!a

Magnetic dipole
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!Jdip(!r ) = −m! ×∇! !r δ3(!r − !r d), where !r d = position of dipole
! = ∇! !F (m! · B) (force on a dipole)
! = m! × !B (torque on a dipole)
U = −m! · !B

Magnetically Polarizable Materials:
!M(!r ) = magnetization = magnetic dipole moment per unit volume
!Jbound = ∇×! !M , !Kbound = !M × n̂

1!H ≡ !B M
0

− ! , !
µ

∇× !H = !Jfree , ∇ ·! !B = 0

Boundary conditions:
Bab

⊥
ove − Bbe

⊥
low = 0 Hab

⊥
ove − Hbe

⊥
low = −(Mab

⊥
ove − Mbe

⊥
low)

!B‖ − !B‖ = µ0( !K × n̂) !H‖ !
above below above − H‖ !

below = Kfree × n̂

Linear Magnetic Materials:
!M = !χmH, χm = magnetic susceptibility
= (1 + ) = permeability, ! !µ µ0 χm B = µH

Magnetic Monopoles:
µ!B( 0 qm ! !!r ) = r̂ ; Force on a static monopole: F = q
4 mB
π r2

µ q q
Angular momentum of monopole/charge system: ! m

L = 0 e
r̂ , where r̂ points

4π
from qe to qm

µ q q 1
Dirac quantization condition: 0 e m = h̄ r

4 2
× intege

π

Connection Between Traceless Symmetric Tensors and Legendre Polynomials
or Spherical Harmonics:

(2%)!
P"(cos θ) = { ẑi1 . . . ẑ n̂

2"(%!) i2 ! } i1 . . . n̂i!

For m ≥ 0,
(",m)Y"m(θ, φ) = Ci ...i n̂i1 . . . n̂i! ,
1 !

where (",m)C +
i i ...i = d"m { ûi . . . u+
1 2 ! 1

ˆi z
m îm+1 . . . ẑi! } ,

( 1)
with d"m =

− m(2%)!
2"%!

√

2m (2% + 1)
,

4π (% + m)! (% − m)!

and û+ 1
= √ (ê

2
x + iêy)

Form m < 0, Y",−m(θ, φ) = (−1)mY"m
∗ (θ, φ)
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Maxwell’s Equations:

1 !∂B
(i) ∇ ·! !E = ∇×!ρ (iii) !E =

ε0
− ,

∂t
1 !∂E

(ii) ∇ ·! !B = 0 (iv)∇×! !B = !µ0J +
c2 ∂t

1
where µ0ε0 =

c2

Lorentz force law: !F = q( !E + !v × !B)

∂ρ
Charge conservation: =

∂t
−∇ ·! !J

Maxwell’s Equations in Matter:

Polarization !P and magnetization !M :

ρb = −∇ ·! ! ! ! ! ! ! !P , Jb = ∇× M , ρ = ρf + ρb , J = Jf + Jb

Auxiliary Fields:
!B!H ≡ P
µ

− ! !M , D ≡ !ε0E + !
0

Maxwell’s Equations:
!∂B

(i) ∇ ·! ! = ρf (iii)∇×! !D E = − ,
∂t

!∂D
(ii) ∇ ·! !B = 0 (iv)∇×! ! = !H Jf +

∂t

For linear media:
1!D = ! !εE , H = !B
µ

where ε = dielectric constant, µ = relative permeability
!∂D!Jd ≡ = displacement current

∂t

Maxwell’s Equations with Magnetic Charge:

1 !∂B
(i) ∇ ·! !E = !

ε
∇×!

e (iii) !ρ E = −µ0Jm
0

− ,
∂t

1 !∂E
(ii) ∇ ·! ! ∇×!µ0ρm (iv) !B = !B = µ0Je +

c2 ∂t

1
Magnetic Lorentz force law: !F = qm

(

!B − !v
c2

× !E

)
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Current, Resistance, and Ohm’s Law:

!J = !σ(E + !v × !B) , where σ = conductivity. ρ = 1/σ = resistivity

Resistors: V = IR , P = IV = I2R = V 2/R

$
Resistance in a wire: R = ρ , where $ = length, A = cross-sectional area, and ρ =

A
resistivity

V
Charging an RC circuit: I = 0

e−t/RC , Q = CV
[

1 − e−t/RC
0

R

]

EMF (Electromotive force): E ≡
∮

( !E + !v × !B) · d!$ , where !v is either the velocity

of the wire or the velocity of the charge carriers (the difference points along the
wire, and gives no contribution)

Inductance:

Universal flux rule: Whenever the flux through a loop changes, whether due to a
dΦ

changing ! B
B or motion of the loop, E = − , where ΦB is the magnetic flux

dt
through the loop

Mutual inductance: Φ2 = M21I1 , M21 = mutual inductance

µ d!$ d!$
(Franz) Neumann’s formula: 2

M = 0
21 M

4π

∮

P1

∮

1
12 =

·
P2

|!r 1 − !r 2|

dI
Self inductance: Φ = LI , E = −L ; L = inductance

dt

Self inductance of a solenoid: L = n2µ0V , where n = number of turns per length,
V = volume

V
Rising current in an RL circuit: I = 0

[

1 − R

e tL

R

Boundary Conditions:

]

D1
⊥ − D2

⊥ = !σf E1
‖ − !E2

‖ = 0
1

E1
⊥ − E2

⊥ = !σ D‖ ! ‖ P ‖ !D = ! P ‖
ε 1
0

− 2 1 − 2

B1
⊥ − B2

⊥ = 0 !H1
‖ − !H2

‖ = − !n̂ × Kf

H1
⊥ − H2

⊥ = M2
⊥ − M1

⊥ !B1
‖ − !B2

‖ = −µ0n̂ × !K
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Conservation Laws:
1

Energy density: uEM =
[

1! !ε 2
0 E

2
| |2 +

µ0
|B|

1

]

Poynting vector (flow of energy): !S = ! !E B
µ0

×

Conservation of energy:
d

Integral form: [ !U
d EM + Umech] =
t

−
∫

S · d!a

∂u
Differential form: = ∇ ·!

∂t
− !S , where u = uEM + umech

1 1
Momentum density: !℘EM = !S ; Si is the density of momentum in the i’th

c2 c2

direction
1

Maxwell stress tensor: T = ε

(

E E − δ | !E|2 1
ij 0 i j 2 ij

)

+
µ0

(
1

BiBj − δ
2 ij | !B|2

)

where −Tij = −Tji = flow in j’th direction of momentum in the i’th direction
Conservation of momentum:

d 1
Integral form: P

t

(

mech,i + S v
d i d3x = Tij daj , for a olume

c2

b

∫

V

) ∮

S
V

ounded by a surface S
∂

Differential form: (℘mech,i + ℘EM,i) = ∂jTji
∂t

Angular momentum:
Angular momentum density (about the origin): !&EM = !r×!℘EM = ε0[!r×( !E× !B)]

Wave Equation in 1 Dimension:
∂2f 1 ∂2f− = 0 , where v is the wave velocity
∂z2 v2 ∂t2

Sinusoidal waves:
f(z, t) = A cos [k(z − vt) + δ] = A cos [kz − ωt + δ]

where
ω = angular frequency = 2πν ν = frequency

ω
v = = phase velocity δ = phase (or phase constant)

k
k = wave number λ = 2π/k = wavelength
T = 2π/ω = period A = amplitude

Euler identity: eiθ = cos θ + i sin θ

Complex notation: f(z, t) = Re[Ae˜ i(kz−ωt)] , where Ã = Aeiδ; “Re” is usually
dropped.

ω dω
Wave velocities: v = = phase velocity; vgroup = = group velocity

k dk

Electromagnetic energy & conservation

CHAPTER 

8 

356 

Conservation Laws 

8.1 . CHARGE AND ENERGY 

8.1.1 • The Continuity Equation 

In this chapter we study conservation of energy, momentum, and angular momen-
tum, in electrodynamics. But I want to begin by reviewing the conservation of 
charge, because it is the paradigm for all conservation laws. What precisely does 
conservation of charge tell us? That the total charge in the universe is constant? 
Well, sure-that's global conservation of charge. But local conservation of charge 
is a much stronger statement: If the charge in some region changes, then exactly 
that amount of charge must have passed in or out through the surface. The tiger 
can't simply rematerialize outside the cage; if it got from inside to outside it must 
have slipped through a hole in the fence. 

Formally, the charge in a volume V is 

Q(t) = fv p(r, t) dr, (8.1) 

and the current flowing out through the boundary Sis fs J · da, so local conser-
vation of charge says 

dQ =- J. J · da. 
dt rs (8.2) 

Using Eq. 8.1 to rewrite the left side, and invoking the divergence theorem on the 
right, we have 

{ ap dr = - { v . J dr, lv at lv 
and since this is true for any volume, it follows that 

(8.3) 

(8.4) 

This is the continuity equation-the precise mathematical statement of lo-
cal conservation of charge. It can be derived from Maxwell's equations-
conservation of charge is not an independent assumption; it is built into the laws 
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of electrodynamics. It serves as a constraint on the sources (p and J). They can't 
be just any old functions-they have to respect conservation of charge.1 

The purpose of this chapter is to develop the corresponding equations for local 
conservation of energy and momentum. In the process (and perhaps more impor-
tant) we will learn how to express the energy density and the momentum density 
(the analogs top), as well as the energy "current" and the momentum "current" 
(analogous to J). 

8.1.2 • Poynting's Theorem 
In Chapter 2, we found that the work necessary to assemble a static charge distri-
bution (against the Coulomb repulsion of like charges) is (Eq. 2.45) 

Eo J 2 We= 2 E dr, 

where E is the resulting electric field. Likewise, the work required to get currents 
going (against the back emf) is (Eq. 7.35) 

Wm= -
1
- JB 2 dr, 

2JLo 
where B is the resulting magnetic field. This suggests that the total energy stored 
in electromagnetic fields, per unit volume, is 

1 ( 2 1 2) u = - EoE + - B . 
2 JLo 

(8.5) 

In this section I will confirm Eq. 8.5, and develop the energy conservation law for 
electrodynamics. 

Suppose we have some charge and current configuration which, at time t, pro-
duces fields E and B. In the next instant, d t, the charges move around a bit. 
Question: How much work, dW, is done by the electromagnetic forces acting 
on these charges, in the interval dt? According to the Lorentz force law, the work 
done on a charge q is 

F · dl = q(E + v x B)· vdt = qE · vdt. 

In terms of the charge and current densities, q ---+ pd r: and pv ---+ J, 2 so the rate 
at which work is done on all the charges in a volume V is 

dW { dt = lv (E · J) dr:. (8.6) 

1The continuity equation is the only such constraint. Any functions p(r, t) and J(r, t) consistent 
with Eq. 8.4 constitute possible charge and current densities, in the sense of admitting solutions to 
Maxwell's equations. 
2This is a slippery equation: after all, if charges of both signs are present, the net charge density can 
be zero even when the current is not-in fact, this is the case for ordinary current-carrying wires. We 
should really treat the positive and negative charges separately, and combine the two to get Eq. 8.6, 
withJ = P+V+ + p_v_. 
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agnetic Waves:

1 ! !
2 ∂2E 1 ∂2B

Equations: ∇ !E − = 0 , ∇2 !B − = 0
c2 ∂t2 c2 ∂t2

rly Polarized Plane Waves:
! ( ˜ !
E !r , t) = E ei(k·!r−ωt)

0 n ,ˆ where Ẽ0 is a complex amplitude, n̂ is a unit vector,
and ω/|!k| = vphase = c.

n̂ · !k = 0 (transverse wave)
1!B = !k̂ × E
c

Energy and Momentum:
u = ε E2

0 cos20 (kz − ωt + δ) , (!k = k ẑ)

1
S

︸

averages

! = ! !E B = uc

︷︷

to 1/2
︸

1× z ,ˆ I (intensity) =
〈

|!S|
〉

= ε0E
2

µ0 2 0

1 u!!℘EM = S = ẑ
c2 c

Electromagnetic Waves in Matter:

n ≡
√

µε
= index of refraction

µ0ε0
c

Electrom

Wave

Linea

v = phase velocity =
n

1 1
u =

[

ε| !E
2

|2 +
µ
| !B|2

n

]

!B = k̂
c

× !E

1 uc!S = ! !E × B = ẑ
µ n

Reflection and Transmission at Normal
Boundary conditions:

ε1E1
⊥ = ε2E2

⊥ !E1
‖ = !E2

‖

1 1
B1

⊥ = B2
⊥ !B‖

µ 1 =
1 µ2

Incident wave (z < 0):

!EI(z, t) = Ẽ0,I ei(k1z−ωt) êx

1!BI(z, t) = Ẽ z
0 ei(k1
,I

−ωt) êy
v1

Incidence:

,

!B‖
2 .

.
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µ n

Reflection and Transmission at Normal
Boundary conditions:

ε1E1
⊥ = ε2E2

⊥ !E1
‖ = !E2

‖

1 1
B1

⊥ = B2
⊥ !B‖

µ 1 =
1 µ2

Incident wave (z < 0):
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v1

Incidence:

,

!B‖
2 .

.

9.2 Electromagnetic Waves in Vacuum 

eM 

c -
FIGURE9.12 

399 

Notice that S is the energy density (u) times the velocity of the waves (c z)-as it 
should be. For in a time !:it, a length c !:it passes through area A (Fig. 9 .12), carry-
ing with it an energy uAc !:it. The energy per unit time, per unit area, transported 
by the wave is therefore uc. 

Electromagnetic fields not only carry energy, they also carry momentum. In 
fact, we found in Eq. 8.29 that the momentum density stored in the fields is 

1 
g= - S. 

c2 

For monochromatic plane waves, then, 

1 2 2 A 1 A g = - £oE0 cos (kz - cvt + 8) z = - u z. 
c c 

(9.58) 

(9.59) 

In the case of light, the wavelength is so short("' 5 x 10-7 m), and the period 
so brief ("' 1 o-15 s ), that any macroscopic measurement will encompass many 
cycles. Typically, therefore, we're not interested in the fluctuating cosine-squared 
term in the energy and momentum densities; all we want is the average value. 
Now, the average of cosine-squared over a complete cycle7 so 

1 2 
(u} = 2£oE0 , 

1 2A 
(g} = 2c £oEo z. 

(9.60) 

(9.61) 

(9.62) 

I use brackets, ( }, to denote the (time) average over a complete cycle (or many 
cycles, if you prefer). The average power per unit area transported by an electro-
magnetic wave is called the intensity: 

(9.63) 

7There is a cute trick for doing this in your head: sin2 (} + cos2 (} = 1, and over a complete cycle the 
average of sin2 (} is equal to the average of cos2 (}, so ( sin2 ) = ( cos2 ) = 1/2. More formally, 

linT - cos2 (kz- 2rrtfT + 8) dt = 1/2. 
T o 

momentum density

Variable separation in spherical coords

3.3 Separation of Variables 143 

Notice that P1(x) is (as the name suggests) an lth-order polynomial in x; it con-
tains only even powers, if 1 is even, and odd powers, if 1 is odd. The factor in front 
(1/211!) was chosen in order that 

P1(1) = 1. (3.63) 

The Rodrigues formula obviously works only for nonnegative integer values 
of l. Moreover, it provides us with only one solution. But Eq. 3.60 is second-
order, and it should possess two independent solutions, for every value of l. It 
turns out that these "other solutions" blow up at () = 0 and/or () = n, and are 
therefore unacceptable on physical grounds.13 For instance, the second solution 
fori= 0 is 

8(0) = ln (tan%). (3.64) 

You might want to check for yourself that this satisfies Eq. 3.60. 
In the case of azimuthal symmetry, then, the most general separable solution 

to Laplace's equation, consistent with minimal physical requirements, is 

V(r, 0) = ( Ar1 + P1(cos0). 

(There was no need to include an overall constant in Eq. 3.61 because it can be 
absorbed into A and B at this stage.) As before, separation of variables yields an 
infinite set of solutions, one for each l. The general solution is the linear combi-
nation of separable solutions: 

V(r, 0) = f ( A1r1 + P1(cos0). 
1=0 

(3.65) 

The following examples illustrate the power of this important result. 

Example 3.6. The potential V0 (0) is specified on the surface of a hollow sphere, 
of radius R. Find the potential inside the sphere. 
Solution 
In this case, B1 = 0 for alll---otherwise the potential would blow up at the origin. 
Thus, 

00 

V(r, 0) = L A1r1 P1(cos0). (3.66) 
1=0 

13In rare cases where the z axis is excluded, these "other solutions" do have to be considered. 
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The first experiment, of course, is a straightforward case of motional emf; 
according to the flux rule: 

C' = - dct> 
c- dt . 

I don't think it will surprise you to learn that exactly the same emf arises in Ex-
periment 2-all that really matters is the relative motion of the magnet and the 
loop. Indeed, in the light of special relativity it has to be so. But Faraday knew 
nothing of relativity, and in classical electrodynamics this simple reciprocity is a 
remarkable coincidence. For if the loop moves, it's a magnetic force that sets up 
the emf, but if the loop is stationary, the force cannot be magnetic-stationary 
charges experience no magnetic forces. In that case, what is responsible? What 
sort of field exerts a force on charges at rest? Well, electric fields do, of course, 
but in this case there doesn't seem to be any electric field in sight. 

Faraday had an ingenious inspiration: 

A changing magnetic field induces an electric field. 

It is this induced8 electric field that accounts for the emf in Experiment 2.9 Indeed, 
if (as Faraday found empirically) the emf is again equal to the rate of change of 
the flux, 

(7 .14) 

then E is related to the change in B by the equation 

f E · dl = - J . da. (7.15) 

This is Faraday's law, in integral form. We can convert it to differential form by 
applying Stokes' theorem: 

aB 
V xE= - - . at (7.16) 

8"Induce" is a subtle and slippery verb. It carries a faint odor of causation ("produce" would make 
this explicit) without quite committing itself. There is a sterile ongoing debate in the literature as to 
whether a changing magnetic field should be regarded as an independent "source" of electric fields 
(along with electric charge)-after all, the magnetic field itself is due to electric currents. It's like 
asking whether the postman is the "source" of my mail. Well, sure-he delivered it to my door. On the 
other hand, Grandma wrote the letter. Ultimately, p and J are the sources of all electromagnetic fields, 
and a changing magnetic field merely delivers electromagnetic news from currents elsewhere. But it 
is often convenient to think of a changing magnetic field "producing" an electric field, and it won't 
hurt you as long as you understand that this is the condensed version of a more complicated story. For 
a nice discussion, seeS. E. Hill, Phys. Teach. 48,410 (2010). 
9You might argue that the magnetic field in Experiment 2 is not really changing-just moving. What 
I mean is that if you sit at a fixed location, the field you experience changes as the magnet passes by. 
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Current, Resistance, and Ohm’s Law:

!J = !σ(E + !v × !B) , where σ = conductivity. ρ = 1/σ = resistivity

Resistors: V = IR , P = IV = I2R = V 2/R

$
Resistance in a wire: R = ρ , where $ = length, A = cross-sectional area, and ρ =

A
resistivity

V
Charging an RC circuit: I = 0

e−t/RC , Q = CV
[

1 − e−t/RC
0

R

]

EMF (Electromotive force): E ≡
∮

( !E + !v × !B) · d!$ , where !v is either the velocity

of the wire or the velocity of the charge carriers (the difference points along the
wire, and gives no contribution)

Inductance:

Universal flux rule: Whenever the flux through a loop changes, whether due to a
dΦ

changing ! B
B or motion of the loop, E = − , where ΦB is the magnetic flux

dt
through the loop

Mutual inductance: Φ2 = M21I1 , M21 = mutual inductance

µ d!$ d!$
(Franz) Neumann’s formula: 2

M = 0
21 M

4π

∮

P1

∮

1
12 =

·
P2

|!r 1 − !r 2|

dI
Self inductance: Φ = LI , E = −L ; L = inductance

dt

Self inductance of a solenoid: L = n2µ0V , where n = number of turns per length,
V = volume

V
Rising current in an RL circuit: I = 0

[

1 − R

e tL

R

Boundary Conditions:

]

D1
⊥ − D2

⊥ = !σf E1
‖ − !E2

‖ = 0
1

E1
⊥ − E2

⊥ = !σ D‖ ! ‖ P ‖ !D = ! P ‖
ε 1
0

− 2 1 − 2

B1
⊥ − B2

⊥ = 0 !H1
‖ − !H2

‖ = − !n̂ × Kf

H1
⊥ − H2

⊥ = M2
⊥ − M1

⊥ !B1
‖ − !B2

‖ = −µ0n̂ × !K
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FIGURE9.11 

E(r, t) = Eo cos (k · r- wt + 8) ii, 
1 A 

B(r, t) = - Eo cos (k · r- wt + 8)(k x ii). 
c 

(9.51) 

(9.52) 

Problem 9.9 Write down the (real) electric and magnetic fields for a monochro-
matic plane wave of amplitude E0 , frequency w, and phase angle zero that is (a) 
traveling in the negative x direction and polarized in the z direction; (b) traveling in 
the direction from the origin to the point (1, 1, 1), with polarization parallel to the 
xz plane. In each case, sketch the wave, and give the explicit Cartesian components 
ofk and ii. 

9.2.3 • Energy and Momentum in Electromagnetic Waves 

According to Eq. 8.5, the energy per unit volume in electromagnetic fields is 

u = (EoE2 + _!__B 2
). 

2 J.l-o 
In the case of a monochromatic plane wave (Eq. 9.48) 

2 1 2 2 B = 2" E = J.l-oEoE , 
c 

so the electric and magnetic contributions are equal: 

u = EoE2 = cos2 (kz- wt + 8). 

(9.53) 

(9.54) 

(9.55) 

As the wave travels, it carries this energy along with it. The energy flux den-
sity (energy per unit area, per unit time) transported by the fields is given by the 
Poynting vector (Eq. 8.10): 

1 s = - (EX B). (9.56) 
J.l-o 

For monochromatic plane waves propagating in the z direction, 

S = cos2 (kz - wt + 8) z = cu Z. (9.57) 

alternate form for waves

Image charges for grounded sphere:

128 Chapter 3 Potentials 

Example 3.2. A point charge q is situated a distance a from the center of a 
grounded conducting sphere of radius R (Fig. 3.12). Find the potential outside 
the sphere. 

a 
q 

q 

V=O a 

FIGURE3.12 FIGURE3.13 

Solution 
Examine the completely different configuration, consisting of the point charge q 
together with another point charge 

placed a distance 

I R q = - - q, 
a 

(3.15) 

(3.16) 

to the right of the center of the sphere (Fig. 3.13). No conductor, now-just the 
two point charges. The potential of this configuration is 

V(r)= - - + - , 1 (q q') 
4nEo 1- 1-' 

(3.17) 

where 1- and 1-' are the distances from q and q', respectively. Now, it happens (see 
Prob. 3.8) that this potential vanishes at all points on the sphere, and therefore fits 
the boundary conditions for our original problem, in the exterior region. 7 

Conclusion: Eq. 3.17 is the potential of a point charge near a grounded con-
ducting sphere. (Notice that b is less than R, so the "image" charge q' is safely 
inside the sphere-you cannot put image charges in the region where you are cal-
culating V; that would change p, and you'd be solving Poisson's equation with 

7This solution is due to William Thomson Oater Lord Kelvin), who published it in 1848, when he 
was just 24. It was apparently inspired by a theorem of Apollonius (200 BC) that says the locus of 
points with a fixed ratio of distances from two given points is a sphere. See J. C. Maxwell, "Treatise on 
Electricity and Magnetism, Vol. I;' Dover, New York, p. 245. I thank Gabriel Karl for this interesting 
history. 
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a = distance to sphere, 
 q = initial charge,


R = radius

b = image charge location


