Electrostatics:

$\vec{F}=q \vec{E}$, where
$\vec{E}(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{\left(\vec{r}-\vec{r}^{\prime}\right) q_{i}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} \rho\left(\vec{r}^{\prime}\right) \mathrm{d}^{3} x^{\prime}$
$\epsilon_{0}=$ permittivity of free space $=8.854 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right)$
$\frac{1}{4 \pi \epsilon_{0}}=8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
$V(\vec{r})=V\left(\vec{r}_{0}\right)-\int_{\vec{r}_{0}}^{\vec{r}} \vec{E}\left(\vec{r}^{\prime}\right) \cdot \mathrm{d} \vec{\ell}^{\prime}=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \mathrm{d}^{3} x^{\prime}$
$\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}}, \quad \vec{\nabla} \times \vec{E}=0, \quad \vec{E}=-\vec{\nabla} V$
$\nabla^{2} V=-\frac{\rho}{\epsilon_{0}}$ (Poisson's Eq.), $\quad \rho=0 \quad \Longrightarrow \quad \nabla^{2} V=0 \quad$ (Laplace's Eq.)
$W=\frac{1}{2} \int \mathrm{~d}^{3} x \rho(\vec{r}) V(\vec{r})=\frac{1}{2} \epsilon_{0} \int|\vec{E}|^{2} \mathrm{~d}^{3} x$

$$
\vec{E}=0 \text { in conductors }
$$

Conductors:

Just outside, $\vec{E}=\frac{\sigma}{\epsilon_{0}} \hat{n}$
Pressure on surface: $\frac{1}{2} \sigma|\vec{E}|_{\text {outside }}$
Two-conductor system with charges Q and $-Q: Q=C V, W=\frac{1}{2} C V^{2}$

Electric Fields in Matter:

Electric Dipoles:

$$
\begin{aligned}
& \vec{p}=\int d^{3} x \rho(\vec{r}) \vec{r} \quad V_{\text {dip }}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}} \quad \mathbf{E}_{\text {dip }}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}[3(\mathbf{p} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}-\mathbf{p}] . \\
& \rho_{\text {dip }}(\vec{r})=-\vec{p} \cdot \vec{\nabla}_{\vec{r}} \delta^{3}\left(\vec{r}-\vec{r}_{d}\right), \text { where } \vec{r}_{d}=\text { position of dipole } \\
& \vec{F}=(\vec{p} \cdot \vec{\nabla}) \vec{E}=\vec{\nabla}(\vec{p} \cdot \vec{E}) \quad \text { (force on a dipole) } \\
& \vec{\tau}=\vec{p} \times \vec{E} \quad \text { (torque on a dipole) } \\
& U=-\vec{p} \cdot \vec{E}
\end{aligned}
$$

Electrically Polarizable Materials:

$$
\begin{aligned}
& \vec{P}(\vec{r})=\text { polarization }=\text { electric dipole moment per unit volume } \\
& \rho_{\text {bound }}=-\nabla \cdot \vec{P}, \quad \sigma_{\text {bound }}=\vec{P} \cdot \hat{n} \\
& \vec{D} \equiv \epsilon_{0} \vec{E}+\vec{P}, \quad \vec{\nabla} \cdot \vec{D}=\rho_{\text {free }}, \quad \vec{\nabla} \times \vec{E}=0 \text { (for statics) }
\end{aligned}
$$

Boundary conditions:

$$
\begin{array}{ll}
E_{\text {above }}^{\perp}-E_{\text {below }}^{\perp}=\frac{\sigma}{\epsilon_{0}} & D_{\text {above }}^{\perp}-D_{\text {below }}^{\perp}=\sigma_{\text {free }} \\
\vec{E}_{\text {above }}^{\|}-\vec{E}_{\text {below }}^{\|}=0 & \vec{D}_{\text {above }}^{\|}-\vec{D}_{\text {below }}^{\|}=\vec{P}_{\text {above }}^{\|}-\vec{P}_{\text {below }}^{\|}
\end{array}
$$

Capacitance

Parallel-plate: $\quad C=\varepsilon_{0} \frac{A}{d}$
Spherical: $\quad C=4 \pi \varepsilon_{0} \frac{a b}{b-a}$
Cylindrical: $\quad C=2 \pi \varepsilon_{0} \frac{L}{\ln (b / a)} \quad$ (for a length L)

Magnetostatics:

Magnetic Force:

$$
\begin{aligned}
& \vec{F}=q(\vec{E}+\vec{v} \times \vec{B})=\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t} \\
& \vec{F}=\int I \mathrm{~d} \vec{\ell} \times \vec{B}
\end{aligned}
$$

Biot-Savart Law:

$$
\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{\mathrm{~d} \vec{\ell}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}\right) \times\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} \mathrm{~d}^{3} x
$$

Infinitely long straight wire: $\vec{B}=\frac{\mu_{0} I}{2 \pi r} \hat{\phi}$
Infinitely long tightly wound solenoid: $\vec{B}=\mu_{0} n I_{0} \hat{z}$, where $n=$ turns per unit length
Loop of current on axis: $\vec{B}(0,0, z)=\frac{\mu_{0} I R^{2}}{2\left(z^{2}+R^{2}\right)^{3 / 2}} \hat{z}$
Infinite current sheet: $\vec{B}(\vec{r})=\frac{1}{2} \mu_{0} \vec{K} \times \hat{n}, \hat{n}=$ unit normal toward \vec{r}

Vector Potential:

$$
\vec{A}(\vec{r})_{\mathrm{coul}}=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \mathrm{d}^{3} x^{\prime}, \quad \vec{B}=\vec{\nabla} \times \vec{A}, \quad \vec{\nabla} \cdot \vec{A}_{\mathrm{coul}}=0 \quad \vec{\nabla} \cdot \vec{B}=0
$$

Ampère's Law:

$$
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}, \text { or equivalently } \int_{P} \vec{B} \cdot \mathrm{~d} \vec{\ell}=\mu_{0} I_{\mathrm{enc}}
$$

Magnetic dipole

$$
\begin{aligned}
& \vec{m}=\frac{1}{2} I \int_{P} \vec{r} \times \mathrm{d} \vec{\ell}=\frac{1}{2} \int \mathrm{~d}^{3} x \vec{r} \times \vec{J}=I \vec{a}, \\
& \vec{B}_{\mathrm{dip}}(\vec{r})=\frac{\mu_{0}}{4 \pi} \vec{\nabla} \times \frac{\vec{m} \times \hat{r}}{r^{2}}=\frac{\mu_{0}}{4 \pi} \frac{3(\vec{m} \cdot \hat{r}) \hat{r}-\vec{m}}{r^{3}}+\frac{2 \mu_{0}}{3} \vec{m} \delta^{3}(\vec{r}) \\
& \vec{F}=\vec{\nabla}(\vec{m} \cdot \vec{B}) \\
& \vec{\tau}=\vec{m} \times \vec{B} \\
& U=-\vec{m} \cdot \vec{B}
\end{aligned}
$$

Maxwell's Equations:

(i) $\vec{\nabla} \cdot \vec{E}=\frac{1}{\epsilon_{0}} \rho$
(iii) $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$,
(ii) $\vec{\nabla} \cdot \vec{B}=0$
(iv) $\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}$
where $\mu_{0} \epsilon_{0}=\frac{1}{c^{2}}$

Lorentz force law: $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})$
Charge conservation: $\frac{\partial \rho}{\partial t}=-\vec{\nabla} \cdot \vec{J}$
Poynting vector (flow of energy): $\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}$

Electromagnetic energy \& conservation

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot \mathbf{J}
$$

$$
u=\frac{1}{2}\left(\epsilon_{0} E^{2}+\frac{1}{\mu_{0}} B^{2}\right)
$$

Magnetically Polarizable Materials:
$\vec{M}(\vec{r})=$ magnetization $=$ magnetic dipole moment per unit volume
$\vec{J}_{\text {bound }}=\vec{\nabla} \times \vec{M}, \quad \vec{K}_{\text {bound }}=\vec{M} \times \hat{n}$
$\vec{H} \equiv \frac{1}{\mu_{0}} \vec{B}-\vec{M}, \quad \vec{\nabla} \times \vec{H}=\vec{J}_{\text {free }}, \quad \vec{\nabla} \cdot \vec{B}=0$
Boundary conditions:

$$
\begin{array}{ll}
B_{\text {above }}^{\perp}-B_{\text {below }}^{\perp}=0 & H_{\text {above }}^{\perp}-H_{\text {below }}^{\perp}=-\left(M_{\text {above }}^{\perp}-M_{\text {below }}^{\perp}\right) \\
\vec{B}_{\text {above }}^{\|}-\vec{B}_{\text {below }}^{\|}=\mu_{0}(\vec{K} \times \hat{n}) & \vec{H}_{\text {above }}^{\|}-\vec{H}_{\text {below }}^{\|}=\vec{K}_{\text {free }} \times \hat{n}
\end{array}
$$

Current, Resistance, and Ohm's Law:

$\vec{J}=\sigma(\vec{E}+\vec{v} \times \vec{B})$, where $\sigma=$ conductivity. $\rho=1 / \sigma=$ resistivity
Resistors: $V=I R, \quad P=I V=I^{2} R=V^{2} / R$
Resistance in a wire: $R=\frac{\ell}{A} \rho$, where $\ell=$ length, $A=$ cross-sectional area, and $\rho=$ resistivity

Charging an RC circuit: $I=\frac{V_{0}}{R} e^{-t / R C}, \quad Q=C V_{0}\left[1-e^{-t / R C}\right]$

Inductance:

Universal flux rule: Whenever the flux through a loop changes, whether due to a changing \vec{B} or motion of the loop, $\mathcal{E}=-\frac{\mathrm{d} \Phi_{B}}{\mathrm{~d} t}$, where Φ_{B} is the magnetic flux through the loop

$$
\text { integral form } \quad \mathcal{E}=\oint \mathbf{E} \cdot d \mathbf{l}=-\frac{d \Phi}{d t}
$$

Mutual inductance: $\Phi_{2}=M_{21} I_{1}, M_{21}=$ mutual inductance
(Franz) Neumann's formula: $M_{21}=M_{12}=\frac{\mu_{0}}{4 \pi} \oint_{P_{1}} \oint_{P_{2}} \frac{\mathrm{~d} \vec{\ell}_{1} \cdot \mathrm{~d} \vec{\ell}_{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}$
Self inductance: $\Phi=L I, \quad \mathcal{E}=-L \frac{\mathrm{~d} I}{\mathrm{~d} t} ; \quad L=$ inductance
Self inductance of a solenoid: $L=n^{2} \mu_{0} \mathcal{V}$, where $n=$ number of turns per length, $\mathcal{V}=$ volume
Rising current in an RL circuit: $I=\frac{V_{0}}{R}\left[1-e^{\frac{R}{L} t}\right]$

Electromagnetic Waves:

Wave Equations: $\nabla^{2} \vec{E}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0, \quad \nabla^{2} \vec{B}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=0$
Linearly Polarized Plane Waves:

$$
\begin{aligned}
& \vec{E}(\vec{r}, t)=\tilde{E}_{0} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \hat{n}, \quad \text { where } \tilde{E}_{0} \text { is a complex amplitude, } \hat{n} \text { is a unit vector, } \\
& \quad \text { and } \omega /|\vec{k}|=v_{\text {phase }}=c . \\
& \hat{n} \cdot \vec{k}=0 \quad(\text { transverse wave) } \\
& \vec{B}=\frac{1}{c} \hat{k} \times \vec{E} \\
& \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}=u c \hat{z}, \quad I \text { (intensity) }=\langle | \vec{S}| \rangle=\frac{1}{2} \epsilon_{0} E_{0}^{2} \\
& \text { momentum density } \quad \mathbf{g}=\frac{1}{c^{2}} \mathbf{S} .
\end{aligned}
$$

Variable separation in spherical coords

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Image charges for grounded sphere:

$$
q^{\prime}=-\frac{R}{a} q, \quad b=\frac{R^{2}}{a}
$$

$$
\begin{gathered}
\mathrm{a}=\text { distance to sphere }, \\
\mathrm{q}=\text { initial charge }, \\
\mathrm{R}=\text { radius } \\
\mathrm{b}=\text { image charge location }
\end{gathered}
$$

alternate form for waves

$\mathbf{E}(\mathbf{r}, t)=E_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\delta) \hat{\mathbf{n}}$,
$\mathbf{B}(\mathbf{r}, t)=\frac{1}{c} E_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\delta)(\hat{\mathbf{k}} \times \hat{\mathbf{n}})$.

