Quantifying Uncertainties in First Principles Alloy Thermodynamics

Prof. Nicholas Zabaras
The Incoming Viola Hank Professor of Computational Sciences and Engineering, Department of Aerospace and Mechanical Engineering, University of Notre Dame

We present a fully Bayesian framework for quantifying uncertainties in alloy modeling using surrogate models in place of expensive electronic structure based computer codes. We start with the development of an exchange-correlation functional capable of uncertainty quantification capabilities for density functional theory. We discuss predictions on atomization energies and bulk properties. We then provide a Bayesian outlook of a popular alloy surrogate model: the cluster expansion. We propagate uncertainties from not knowing the best surrogate model and its parameters to alloy phase transition temperatures, phase diagrams, band gaps, and bulk properties. We provide a Bayesian justification of the validity of using surrogate models in expensive electronic structure calculations and alloy design. The structure selection problem is fundamental for training surrogate models with a limited computational budget for the prediction of a particular quantity of interest and in closing we will provide some insights on information theoretic approaches for this active learning task.