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Abstract

Ice (solid water) is found in a number of different structures as a function of temperature

and pressure. This project focuses on two forms: Ice VI (space group P42/nmc) and Ice

VII (space group Pn3m). An interesting feature of the structural phase transition from

VI to VII is that both structures are “self clathrate,” which means that each structure has

two sublattices which interpenetrate each other but do not directly bond with each other.

The goal is to understand the mechanism behind the phase transition; that is, is there a

way these structures distort to become the other, or does the transition occur through the

breaking of bonds followed by a migration of the water molecules to the new positions?

In this project we model the transition first utilizing three dimensional visualization of

each structure, then we mathematically develop a common coordinate system for the two

structures. The last step will be to create a phenomenological Ising-like spin model of

the system to capture the energetics of the transition. It is hoped the spin model can

eventually be studied using either molecular dynamics or Monte Carlo simulations.



1 Overview of Ice

The known existence of many solid states of water provides insight into the complexity

of condensed matter in the universe. The familiarity of ice and the existence of many

structures deem ice to be interesting in the development of techniques to understand

phase transitions. More specifically, how does the reorganization of water molecules

Figure 1: A Phase Diagram of water. Nine of the solid states are shown but more are

known to exist. “E,” “M,” and “V” represent standard tempurature and pressure on

Earth, Mars, and Venus, respectively [1].

occur from one phase to another; more generally, can these techniques be utilized to

model phase transitions in other materials in different states? For crystallographers, ice

has resemblances to phases found in SiO2 and GeO2. Also, similarities exist with the

tetrahedral bond networks found in semiconductors and nine of the ice phases [2].
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Figure 2: An example of an ordered

hydrogen atom positioning on a cu-

bic lattice. All water molecules in the

same type of site have the same orien-

tation [4].

This project focuses on building a model for sim-

ulating the structural phase transition between ice

VI and VII, which are two of nine structures that

come from the same parent structure. The “par-

ent” is being defined as: “disordered body centered

cubic structure possessing different fractional con-

centrations of water molecules [3].”

The only ice structure found naturally on earth

is hexagonal ice (Ih). The phase diagram shown in

Fig. 1 represents the water molecule as a function of

temperature and pressure, with the “E,” “V,” and

“M” being standard atmosphere and pressure found

on Earth, Venus, and Mars respectively. Nine of the solid phases are represented here,

but more phases are known to exist.

Figure 3: The tetrahedral bond struc-

ture allows six possible orientations of

the water molecule [5].

We observe that phase transitions that occur

at a pressure dependent phase boundary happen

by a structural re-ordering of oxygen atoms from

one state to another; contrarily, the phase transi-

tions that occur at a temperature boundary do not

structurally re-order the oxygen lattice, but are a

transition from an ordered to disordered hydrogen

state. For example, the phase transition between

ice VII and VIII or cubic ice (Ic) and ice IX occur

at a temperature boundary, and Fig. 2 shows an

example of the type of ordering scheme found in these structures. The phase transition

between ice VI and VII occur at a pressure boundary so the hydrogen placement between

bonds will be in a disordered state. This is illustated in Fig. 3; all six orientations equally
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likely.

The structures of ice VI and VII have been identified through the experimental work

of Kamb [6] and then later through the work of Kuhs [7]. Both experiments found ice VI

Figure 4: Ideal tetrahedral bond

structure shown with water molecules

[5].

to be a member of space group P42/nmc and ice VII

a member of space group Pn3m, determining the

form of the coordinates for the basis oxygen atoms,

which are shown in Table 1. The positions of oxygen

atoms are listed; the hydrogen atom locations are

disordered. There are four hydrogen atoms around

every oxygen making a tetrahedral bonding struc-

ture. Fig. 4 shows an ideal tetrahedral bonding

scheme, with hydrogen bonds linking oxygen atoms.

Because of the hydrogen bonding, the hydrogens

must obey the “ice rules,” which are the two constraints:

1. There is precisely one hydrogen atom on each hydrogen bond.

2. There are precisely two hydrogen atoms near each oxygen atom.

Figure 5: Ideal tetrahedral bond an-

gle shown with water molecules. The

ideal bond angle is θo = 109.47◦ [5].

Violation of the first rule (known as Bjerrum L and

D defects [8]) happens when either none or two pro-

tons are located between bonds. An ionic defect is

a violation of the second rule where three protons

are located near one oxygen atom. These defects

are energetically unfavorable so they rarely occur.

The first rule is estimated to have one defect per five

million bonds at approximately 263 K. The number

of defects goes down considerably with decreasing

temperature, and there are even less ionic defects
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since they are even more energetically unfavorable [8]. Even though these defects are

energetically unfavorable, they will need to be considered in a model.

The unit cell of ice VI is a body-centered tetragonal (bct) Bravais lattice with tetrag-

onal dimensions a = 6.27±0.01 Å and c = 5.79±0.01 Å. Very similarly, ice VII is defined

with a face-centered cubic (fcc) Bravais lattice with cubic dimensions of ac = 3.30± 0.01

Å. Another interesting feature is that both ice structures of interest contain two sub-

lattices (notated A and B in Table I) where the atoms on an A sublattice connect only

with other A atoms on the sublattice, and the atoms on the B sublattice only connect

with atoms on the other B sublattice. The sublattices do not interconnect, yet they do

interpenetrate. Therefore, the complete structure is considered “self-clathrate” [6].

2 Building a Model

This project focuses on the structural phase transition between ice VI and VII and how

this transition might occur. We first utilized the Jmol applet [9] for three dimensional

viewing of ice VI and VII structures in different orientations in space. The challenge was

to construct a simulation cell of adequate size that could represent both structures in a

common coordinate system. Because of the large number of possibilities, the visualization

of small sample cells helped to build a model which contained the possible structures.

Figure 6 shows snapshots of some of the structures created in Jmol. The circles indicate

the position of the oxygen atoms positions, not the bonds or location of the hydrogen

atoms. We let the lighter shade atoms be the A sublattices of ice VI and VII. It was this

visualization tool that aided the ideas for the proposed simulation cell.

After visualizing and comparing coordinate systems, we decided on a simulation cell

that contains two units cells of Ice VI (see Fig. 6 (a)) and one unit cell of Ice VII (see

Fig. 6 (d)). The simulation cell shown in Fig. 7 is a projection diagram on the xy plane

showing potential lattice sites.

The idea is to throw twenty oxygen atoms into the simulation cell and let the atoms
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Ice VI Ice VII

A B A B

a:[0 0 0] a:[1
2

1
2

1
2
] a:[1

2
1
2

1
2
] a: [0 0 0]

d: [1
2

1
2
0] d:[001

2
]

[01
2

1
2
] [1

2
00] disappears disappears

[1
2
01

2
] [01

2
0]

b:[1
4

1
4

1
4
] g: [1

2
, 1

2
+ x, 1

2
+ z]

[3
4
, 3

4
, 1

4
] [1

2
, 1

2
+ x, 1

2
+ z]

[3
4
, 1

4
, 3

4
] [1

2
+ x, 1

2
, 1

2
+ z]

[1
4
, 3

4
, 3

4
] [1

2
+ x, 1

2
, 1

2
+ z]

c:[3
4

3
4

3
4
] [0 x z ]

[1
4

1
4

3
4
] [0 x̄ z ]

[1
4

3
4

1
4
] [x 0 z̄ ]

[3
4

1
4

1
4
] [x̄ 0 z̄ ]

Table 1: Coordinates of the oxygen basis atoms in ice VI and VII. Following the group theory

convention, positions are shown as fractions of the Bravais lattice dimensions; a and c for body-

centered tetragonal ice VI and ac for face-centered cubic ice VII. The bars indicate negative

fractions.

randomly choose one of the many the possible configurations; and then, via a Monte Carlo

algorithm, simulate movement of the atoms from ice VI to one of the possible configura-

tions of ice VII, or vice versa. For example, Figs. 8 and 9 contain three of the possible crys-

tal structures the simulation cell can represent. Figures 8 (a) and (b) show in projection

two of the possible realizations of ice VI and Figs. 9 (a) and (b) show one possible realiza-

tion ice VII with two of sublattices A and B projected seperately. Each realization of an

ideal ice VI or VII structure has its own energy, but the degeneracy of each of these perfect

states is different.
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Figure 6: a,b, and c are snapshots of ice VI. All snapshots are a projection on the xy−plane,

and the lighter shades are the A sublattices. It should be remembered the oxygen atoms exist

at different heights in z. One unit cell of ice VI contains one A and a one B sublattice, so the

visualizations contain different numbers of atoms. d is a snapshot of the unit cell of ice VII

with the a sublattice being the lighter shade.

Figure 7: Each circle in the xy plane rep-

resent atoms at heights z = 0, 2, 3, 4

(large circles) and z = 1, 3, 5, 7 (small

circles). The dimensions of the unit cell

are
√

2
8 a ×

√
2

8 a ×
c
8 , where a and c are

the lattice constants of ice VI. For ice VII,

ac =
√

2a = c.

This should appear through the entropy when

the transition is modeled in a simulation.

3 Future Work

As seen with some of the previous examples,

real world crystal systems have many degrees

of freedom. Our eventual goal is to model the

ice VI-VII phase transition using a lattice gas

model. A lattice gas model can represent a large

number of fixed particles confined to a lattice

but allowed to move throughout the lattice to

different lattice sites. Most importantly, the

model may include specific interactions between

particles, such as interaction energies and collisions. A particular lattice will contain N

sites, with ρ = n
N

being the fraction of particles occupying the lattice [8]. For the special

case of the lattice gas Ising model the particles must satisfy the following rules (as given
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by Newman [8]):

1. “The total number of particles is fixed, so that if a particle disappears from one site it must

reappear at another. (Equivalently, we could say that the particle density ρ is constant.)”

2. “A lattice site can be occupied by at most one particle at any time. This “site exclusion”

rule has a similar effect to the hard-sphere repulsion seen in real systems, which is the

result primarily of Pauli exclusion.”

3. “If two particles occupy nearest-neighbor sites on the lattice, they feel an attraction with

fixed energy ε. This rule mimics the effect of the attractive forces between molecules.” [8]

With these assumptions, a certain fraction of particles ρ (i.e., the twenty oxygens in ice

VI) could be placed at random, and a Monte Carlo simulation, such as the Metropolis

or continuous time algorithm, could be performed. Remembering that the atoms have

freedom to move in the model, as the thermodynamic variables (e.g., temperature T and

pressure P) of the system change, the system may undergo a phase transition. Ice VI

should evolve into an ice VII structure through random Monte Carlo moves. We are not

at this point in the project yet, so we discuss instead steps in building a lattice gas model,

starting with the creation of a Hamiltonian.

First, a Hamiltonian must be constructed to represent the state of the solid being

modeled. Here we define a set of variables δi to represent n lattice sites in the simulation

cell (e.g., for our problem Fig. 7), such that δi is 0 if the lattice site is unoccupied by an

atom, or 1 if it is occupied. Mathematically, it can be expressed as

N∑
i=1

δi = ρN = n (1)

For the Ising model, by rule two, the pairs of nearest-neighbor particles contribute an

energy −ε to the system. This can be written as

H = −ε
∑
i,j

δi δj, (2)
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Figure 8: a,b are two projection diagrams on the xy-plane of possible ice VI configurations.

The numbering represents the heights in z on a scale of c
8 . Each of the configurations have four

different degenerate states found by permuting z coordinates of center and corner positions.

where i, j are nearest neighbor sites. We can add to the model by specifying different

energy parameters for interactions between first and higher order neighbors; or by putting

in anisotropy, making the x and y directions different than z; or by codifying the physics

of ice rules, putting in energetics to select for tetrahedral bonds. A very simple way to

do this is a strain term,

E =
1

2
Ea

∑
(i,j,k)

(θijk − θo)
2, (3)

where θo ≈ 109.47◦ is the ideal angle of a perfect tetrahedron, i, j, k represent neighboring

sites, and θijk represents the bond angle between the three sites. If the energy parameter

Ea for the angle is positive, smaller and larger angles than the perfect tetrahedral of Fig.

4 will have larger energies. When the dimensions of the simulation cell are set so that it is

a cube, a 16-atom structure for ice VI has the lowest energy state (zero). This model will

give an idea of differences in energy states through distortions of the perfect tetrahedron

to imperfect ones.

Understanding the mechanism behind this phase transition, the way these structures

distort, break bonds and migrate, is the goal of this research. In this project we developed

a simulation cell to model the phase transition, and mathematically described a simple
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Figure 9: a and b are projection diagrams into the xy-plane of sublattices A and B for one

potential ice VII configuration. The numbering represents the heights in z on a scale of c
8 . Their

are two equivalent permutations in this configuration.

strain model. The last step will be to create a phenomenological Ising-like spin model of

the system to capture the energetics of the transition, and then to use either molecular

dynamics or Monte Carlo simulations to carry out the study of the transition.
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