SCALAR CURRENTS IN $0^+ \rightarrow 0^+$ BETA DECAY AND THE 8B NEUTRINO SPECTRUM

Abstract

by

Chris E. Oritz

Two experiments to understand the standard electro-weak model are presented. In one experiment scalar contributions to the weak interaction were searched for by determining with accuracy the $e - \nu$ correlation coefficient in a $0^+ \rightarrow 0^+$ decay. The correlation coefficient for the $0^+ \rightarrow 0^+$ β-decay of 32Ar was measured to be $\alpha = 0.9989 \pm 0.0052 \pm 0.0036$, for vanishing Fierz interference. This was used to put unprecedented limits on scalar contributions to the weak interaction.

In the second experiment the β-delayed α spectrum from 8B was measured. The experiment was designed to overcome systematic uncertainties that plagued previous measurements. This spectrum differs significantly from previous measurements. The measured α spectrum was used to deduce the ν spectrum. This will be used as a benchmark by experiments trying to detect distortions of the solar-ν spectrum in the search for physics beyond the standard model.