STUDY OF THE 9Li(d,p)10Li REACTION

Abstract

by

Peter Angelo Santi

The structure of the particle unbound nucleus, ^{10}Li , was investigated in a kinematically complete experiment using the $^{9}\text{Li}(d,p)^{10}\text{Li}$ reaction in inverse kinematics at an incident ^{9}Li energy of 20 MeV/A. The experiment utilized the S800 Spectrograph at the National Superconducting Cyclotron Laboratory to measure the outgoing ^{9}Li from the breakup of ^{10}Li in coincidence with the recoiling protons from the (d,p) reaction which were measured using a series of silicon detectors. Based on the measured kinematics of the recoiling protons from the $^{9}\text{Li}(d,p)$ reaction, a lower limit to the mass of ^{10}Li was measured at $\Delta = 33.098 \pm 0.08$ MeV which is consistent with previous measurements.

A complete reconstruction of the breakup of 10 Li was performed based on the measured properties of the outgoing 9 Li nucleus, the recoiling proton, and the incident 9 Li beam. This reconstruction made it possible to isolate the structure of 10 Li associated with a ground state 9 Li core from structure associated with a 9 Li core in its first excited state. The observed ratio of 9 Li $^{\circ}$ core events to the total number of 10 Li events that were detected in the experiment was 0.098 ± 0.04 at forward center of mass angles (2.7° to 9.5°), and 0.244 ± 0.04 at more backward center of mass angles (11° to 26°). This ability to identify 10 Li events associated with a 9 Li ground state core allowed for a relatively background free measurement of the low-lying structure of 10 Li. The best fit to the Q-value spectra for 10 Li events

with a ^9Li ground state core yielded a state located at Q = -2.58(11) MeV which corresponds to a neutron separation energy $S_n = -0.35(11)$ MeV. Due to the poor Q-value resolution that was observed in this experiment, however, the existence of an additional low-lying state at Q > -2.43 MeV $(S_n > -0.2$ MeV) could not be ruled out. The angular distribution of this structure was measured and compared with coupled reaction channel (CRC) calculations for an s-wave and a p-wave state. The comparison between the data and theory was inconclusive, however, in determining the nature of the observed structure in ^{10}Li .