UNIVERSITY OF NOTRE DAME DEPARTMENT OF PHYSICS

NUCLEAR SEMINAR

Monday, March 26

Experimental study of singleparticle strength in exotic psd-shell nuclei using transfer reactions

Dr. Jie Chen Argonne National Laboratory

Nucleon-transfer reactions are a powerful experimental tool to probe the energies and strengths of single-particle excitations, and how these change as nuclei evolve with neutron excess. To this end, we have carried out the 11 Be(d,p) 12 Be, 12 B($d,^3$ He) 11 Be, and 21 F(d,p) 22 F reactions using the facilities at the Research Center for Nuclear Physics (RCNP) at Osaka University and at the Argonne Tandem Linear Accelerator System (ATLAS), using the HELIOS spectrometer. The 11 Be(d,p) 12 Be measurement was carried out at RCNP at approximately 26 MeV per nucleon. The results yield evidence that the ground-state configuration of ¹²Be is dominated by the d-wave intruder orbital, suggesting a dramatic evolution of the intruder mechanism moving from ¹¹Be to ¹²Be, and that the N=8 shell gap remains diminished in these neutron-rich Be systems. The ${}^{12}\text{B}(d_r{}^3\text{He}){}^{11}\text{Be}$ and ${}^{21}\text{F}(d_rp){}^{22}\text{F}$ reactions were carried out a lower incident beam energies at ATLAS. The former study sheds light on the proton p-wave strength in ¹¹Be, a neutron halo nucleus, while the latter allows for the two-body matrix elements to be determined. In each case, the results have been used to assess the accuracy of shellmodel calculations in the region.

4 pm - 5 pm

Nuclear Science
Laboratory

124 Nieuwland
Science Hall

~~~~

All interested persons are cordially invited to attend

~~~~

Refreshments will be served prior to the seminar in room 124