
Computer Code for Calculating Matrix Elements and

Overlaps of States for the Generalized Seniority Scheme

via Recurrence Relations

Ke Cai

Bard College

2010 NSF/REU Program

Physics Department, University of Notre Dame

Advisor: Mark Caprio

August 6th, 2010

1

Abstract

The generalized seniority approximation provides a truncation scheme for the nu-
clear shell model based on building the states of the nucleus from nucleon pairs. We
present a computer code to calculate matrix elements of one-body and two-body op-
erators between generalized seniority states and overlaps of these states based on a set
of recurrence relations.

1 Introduction

The generalized seniority approximation provides a truncation scheme for the nuclear shell

model. The nuclear interaction tends to induce nucleons to form pairs coupled to angular

momentum zero. This approximation considers the ground state of an even-even nucleus

to be consisted of collective S pairs, which are constructed from like nucleons coupled to

angular momentum zero. Then the low-lying excited states of a nucleus are obtained from

breaking one or more of these pairs. The generalized seniority, v, of the state of a nucleus,

is defined to be the number of nucleons not participating the collective S pairs. To perform

calculations based on the generalized seniority scheme, it is first necessary to compute the

matrix elements of one-body and two-body operators between basis states of low generalized

seniority. It is also necessary to calculate the overlaps between these states in order to

construct an orthogonal basis. In this paper, we present a computer code to calculate such

quantities. The main algorithm is based on a set of recurrence relations recently derived

[1]. In Sec.2, we go over some essential definitions. In Sec.3, we briefly introduce the

recurrence relations1. We present the structure of the code in Sec.4 and 5. In Sec.6, we

present validations we have performed. In Sec.7, we summarize the paper and propose

future applications of the code.

1For detailed discussion involving the contents of Sec.2 and Sec.3, please refer to [1]

2

2 Definitions

We first review some of the necessary definitions of generalized seniority scheme and notations

used in the recurrence relations. Working in a single major shell, one can uniquely specify a

single-particle level. Let C†c,γ be the creation operator 2 for a particle in the state of angular

momentum c and z-projection quantum number γ. The angular-momentum coupled product

of two spherical tensor operators is defined by (Aa × Bb)cγ =
∑

αβ(aαbβ|cγ)AaαB
b
β[3]. Then

the angular-momentum coupled pair creation operator is defined by

Ae †ab = (C†a × C
†
b)
e, (1)

and the collective S pair is defined as the following linear combination of pairs of nucleons

coupled to angular momentum zero:

S† =
∑
c

αc
ĉ

2
A0 †
cc , (2)

with ĉ = (2c + 1)1/2. The amplitudes αc are conventionally taken subject to the normal-

ization condition
∑

c(2c + 1)α2
c =

∑
c(2c + 1). The state of zero generalized seniority

and consisted of N S-pairs is defined by the S-pair successively acting on the vacuum N

times: |SN〉 = S†N | 0〉. In general, a state of generalized seniority v is constructed as as

|SNF f〉 = S†NF f †| 0〉, where F f † is a cluster of v fermion creation operators coupled to

angular momentum f .

To calculate matrix elements of one-body and two-body operators, quantities of imme-

diate interest are reduced matrix elements 〈SNGg ‖T trs ‖SNF f〉, taken between generalized

seniority states, where T trs is the elementary one-body multipole operators, and F f and

Gg represent clusters of v nucleons not participating in the S pairs. Since generalized se-

niority states are not orthonormal, we also need to calculate the overlaps between states :

2Here we do not distinguish between the level c and its angular momentum jc. However, when we
start to work with the code, we labeled single particle levels using integers and store corresponding angular
momenta elsewhere, for simplicity of storing information. For definition and further discussion of creation
and annihilation operators, see [2]

3

〈SNGf |SNF f〉. In [1], Γ
(v)
N [· · ·] is used for the one-body operator matrix elements between

states of equal generalized seniority, e.g.,

Γ
(4)
N [(cd)f (kl)nh|(rs)t|(ab)e(ij)mg] ≡ 〈SN(AfcdA

n
kl)

h ‖T trs ‖SN(AeabA
m
ij)

g〉, (3)

and Φ
(v)
N [· · ·] for the overlaps, e.g.,

Φ
(4)
N [(cd)f (kl)n g|(ab)e(ij)mg] ≡ 〈SN(AfcdA

n
kl)

g |SN(AeabA
m
ij)

g〉. (4)

We will follow the same notations in this paper.

Since a state with any generalized seniority and N number of S pairs (N>0) can be expressed

as a linear combination of states with higher generalized seniority by expanding one or more

S pairs in terms of A0
kk, matrix elements or overlaps involving states of different generalized

seniority can be calculated using states with the same generalize seniority, e.g.,

〈SNAgcd|S
N−1(AeabA

m
ij)

g〉 =
∑
k

αk
k̂

2
〈SN−1(A0

kkA
g
cd)

g|SN−1(AeabA
m
ij)

g〉. (5)

It is noteworthy that Γ
(v)
N and Φ

(v)
N obey some symmetry relations under permutation of

arguments, e.g.,

Γ
(4)
N [(cd)f (kl)nh|(rs)t|(ab)e(ij)mg] = −θ(abe)Γ(4)

N [(cd)f (kl)nh|(rs)t|(ba
←→

)e(ij)mg]

= θ(emg)Γ
(4)
N [(cd)f (kl)nh|(rs)t|(ij)m(a

←−−→
b)e g].

(6)

or complex conjugation, e.g.,

Γ
(4)
N [(cd)f (kl)nh|(rs)t|(ab)e(ij)mg] = −θ(rsgh)Γ

(4)
N [(ab)e(ij)mg|(sr)t|(cd)f

←−−−−−−−−−−−→
(kl)nh]. (7)

4

3 The Recurrence Relations

In [1], the reduced matrix elements of the one-body operator and overlaps between general-

ized seniority states are written as vacuum expectation values, e.g.,

〈SNGg ‖T trs ‖SNF f〉 = (−)f−t−g〈0|(G̃gS̃N × T trs × S†NF f †)0|0〉, (8)

and

〈SNGf |SNF f〉 = f̂−1〈0|(G̃f S̃N × S†NF f †)0|0〉. (9)

The recurrence relations for the matrix elements are derived by first commuting the one-

body operator T to the right and then a pair creation operator A to the left to annihilate the

vacuums (shown by the arrows), resulting in terms due to commutators (shown beneath the

arrows), which now involve states with lower generalized seniority or lower N, schematically:

Γ
(v)
N ∼ 〈0|(G̃S̃

N)T (S†N

−−−−→
A†S†N−1

F †)|0〉

∼ 〈0|(G̃S̃N) (S†NTF †
−−→

H†∼[T,F†]

)|0〉+ 〈0|G̃S̃NA†S†N−1F †|0〉

∼ 〈0|(G̃S̃N) (S†NH†)|0〉+ 〈0|G̃S̃NA†S†N−1F †|0〉.

(10)

and then

〈0|G̃S̃NA†
←−−−

S̃N−1+TS̃N−1+S̃N−1T

S†N−1F †|0〉

∼ 〈0|(G̃A†
←−−

Ĩ∼[G̃,A†]

S̃N) (S†N−1F †)|0〉+ 〈0|(G̃S̃N−1) (S†N−1F †)|0〉

+〈0|(G̃T
←−

Ẽ∼[G̃,T]

S̃N−1) (S†N−1F †)|0〉+ 〈0|(G̃S̃N−1)T (S†N−1F †)|0〉

∼ 〈0|(Ĩ S̃N) (S†N−1F †)|0〉+ 〈0|(G̃S̃N−1) (S†N−1F †)|0〉

+〈0|(ẼS̃N−1) (S†N−1F †)|0〉+ 〈0|(G̃S̃N−1)T (S†N−1F †)|0〉.

(11)

5

The recurrence relations for Φ
(v)
N are derived along the same line. The resulting recurrence

relations have the following forms:

Γ
(v)
N ∼ Φ

(v)
N + Γ

(v)
N−1 + Φ

(v)
N−1. (12)

and

Φ
(v)
N ∼ Γ

(v−1)
N + Φ

(v−1)
N . (13)

The recurrence network of Γ
(v)
N and Φ

(v)
N are shown below.

v

0 1 2 ∫ N

F
N

H0L

G
N

H0L

F
N

H1L

G
N

H1L

F
N

H2L

G
N

H2L

F
N

H3L

G
N

H3L

F
N

H4L

G
N

H4L
ª ª ª ª ª

The base case of the recurrence network – the overlaps Φ
(0)
k (k = 0, 1, . . . , N), have been

calculated, using combinatorial methods[4][5]:

Φ
(0)
N = (N !)2

∑
(Mc)∈P(N,D)

[∏
c

α2Mc
c

(
Ωc

Mc

)]
. (14)

4 Structure of the Code

To preserve the algebraic structure of our problem, we construct various classes to represent

objects we work with. The following classes are key to the structure of the code.

6

4.1 The halfint Class

As shown by Eq.(3) and (4), all the calculations of matrix elements and overlaps between

states are carried out using angular momenta of individual or coupled nucleons, which can

only have integer or half-integer values (e.g., -1, -1
2
, 0, 1

2
, 1, etc.,). Since the C++ standard

library does not define a data type for fractions, we first construct the class halfint , which

includes both integers and half-integers (an integer is considered a half-integers with an even

numerator). halfint only defines one member, the numerator, which is of type int, in

C++. Without defining a denominator, we assume that the denominator of any object is

2. We then define appropriate operations of halfint type, such as addition, subtraction,

comparison, etc., in terms of numerator of halfint, i.e. twice the actual value of halfint

objects. Now a user of the code can easily preserve half-integer properties of angular momenta

during computation and perform calculations involving them intuitively. In addition to the

operations above, a series of other functions associated with angular momenta are defined.

Variables of halfint type can now be used as building blocks for the classes to follow.

4.2 The cluster Class

We now construct the cluster class to represent clusters, in consistency with their physical

definition in Sec.2. The cluster class has four members, for storing four kinds of information

of the nucleons being created or annihilated: their species (neutrons or protons), the single

particle levels on which they are created or annihilated, intermediate angular momenta re-

sulting from coupling pairs of nucleons and total angular momentum of all particles created

or annihilated. In particular, intermediate and total angular momenta are declared to be of

type halfint.

In order to use the symmetric property mentioned in Sec.2, we define the canonical ordering

of a cluster and a function to arrange a cluster into such an order and multiplying the cluster

with a phase factor. The canonical order of a cluster is defined such that the single particle

indices are in ascending order within pairs, pairs of indices of single particle levels are in

ascending order lexicographically, i.e. (ab) < (cd) (where (ab) and (cd) are ordered pairs)

7

if a < c or if a = c and b < d. If two pairs of single particle indices are equal, these two

pairs are then arranged such that their coupled angular momenta are in ascending order.

Then using the symmetries in Eq(6), clusters with arguments permuted with respect to each

others can be related by a simple phase factor.

Other important functions defined for cluster include those that check the physical validity

of grouped clusters, such as one that checks triangularity of coupled angular momenta. When

an object of cluster is found to be ”invalid”, these functions either make the term involving

such an invalid cluster zero, or terminate the program, which cut down the amount of cal-

culation or avoid calculating physically impossible quantities. Using cluster, we construct

the two following classes.

4.3 The tensorOp Class

tensorOp is constructed for spherical tensor operators. tensorOp has members creation,

annihilation (of type cluster, defined for the creation-operator-cluster and annihilation-

operator-cluster) and opTotalAm (of type halfint, defined for the coupled angular momen-

tum of total angular momenta totalAm of creation and annihilation. One important

operation defined for a tensorOp is taking it’s adjoint, realized by swapping creation and

annihilation and multiplying with an appropriate phase.

4.4 The state Class

Different from tensorOp, which uses cluster type as members, the class state, constructed

for representing a generalized seniority state, is a derived class of cluster, with an addi-

tional member, pairnumber, which indicates the number of collective S pairs of the state.

Since a generalized seniority state is defined as N S pair creation operators and a cluster

of v creation operators acting on | 0〉. our construction of a generalized seniority state is

consistent with its physical definition in the way that S†N is simplified as N, indicated by

pairnumber and the notion of | 0〉 is suppressed. As a derived class of cluster, state in-

herits a number of functions defined for cluster, while some other functions need to be

8

overloaded or redefined to take pairnumber into account. One function specially defined for

state is raiseSeniority based on Eq(5), which returns a series of states with with higher

seniority, lower pairnumber and appropriate coefficients. With this function, the code is able

to calculate matrix elements and overlaps between states of different generalized seniority.

It also provides means to internal consistency checks.

4.5 The phiEnsemble and the gammaEnsemble Classes

In recurrence calculations, some quantities of lower seniority or lower N come up repeatedly.

To take advantage of this, we use the C++ container, map, to cache the those values. Each

entry in a map is consisted of a unique key , and a corresponding value to the key. In

our case, the value is any intermediate calculation of a matrix element or the overlap be-

tween two states. In order to uniquely identify quantities with key, we construct the classes

phiEnsemble and gammaEnsemble, used to identify values of Φ’s and Γ’s, respectively. A

phiEnsemble contains two members of type state, namely, bra and ket. This way, an ob-

ject of phiEnsemble uniquely labels the overlap between its bra and ket. gammaEnsemble is

defined and used in the same way, except it contains an additional member of type tensorOp,

to indicate the spherical tensor operator involved in the calculation. To utilize symmetries

due to complex conjugation, and provide a rule for C++ to look up values, we define the

canonical form of an ensemble and a function to set an ensemble to ”canonical form”. The

canonical form of an ensemble is a form such that both of the states involved are in ”canonical

order”, and bra is ”less” than ket (defined by lexicographically comparing each member of

the two states). In the case of a gammaEnsemble, if bra and ket were the same, and creation

were ”greater than” annihilation in the spherical tensor operator (again, ”greater than”

is defined by lexicographical comparison), the adjoint of the spherical tensor operator would

be taken, resulting in an appropriate phase.

The above five classes are the foundations of our code. With these classes, we are now

able to perform specific calculations of matrix elements and overlaps in a straightforward

9

way.

5 Calculations and Caching

We used the recurrence relations as our main algorithm for calculating the matrix elements

and overlaps. We developed two sets of functions. One set consists of specific functions,

Phi0, Phi1, Gamma0, Gamma1, etc., defined for each seniority, calculating matrix elements and

overlaps of states using the corresponding formulae provided by the recurrence relations. The

other set consists of two general functions, Gamma and Phi, which perform preliminary works,

such as checking the validity of states and operators, arranging ensembles into ”canonical

form”, looking up existing values in the map’s, etc. After all the preliminary works are done,

if , it calls the specific functions according to seniority of the states involved and finally

caches the values in the map.

In side the specific set of functions, recurrence relations are realized by constructing new

states of lower N or lower seniority, using the information in the original arguments, and

calling the general functions with the newly constructed states or operators as arguments.

These two sets of functions are related by calling each other in the recurrence network until

both v and N reduce to 0.

6 Validations

Some of the formulae provided by the recurrence relation have many arguments and are

error-prone. To check both the correctness of the code and of the formulae themselves, we

are able to perform some validations.

6.1 Comparing with Combinatorial Methods

Overlaps between states of generalized seniority 2 were evaluated as sums over overlaps

between states of generalized seniority 0 using combinatorial methods [1]. We compared our

10

results calculated by the recurrence formulae, to those given by the explicit formulae. The

results agreed – this proves that both the derivation of the recurrence relations and the code

are correct up to v = 2.

6.2 Internal Consistency Checks

As mentioned in Eq.(5), a state with N number of S pairs and generalized seniority v can

be expanded as a linear combination of states with (N-1) number of S pairs generalized

seniority v − 2. Based on this, we compared results calculated by upgrading both of the

states involved in a specific calculation, e.g.,

〈SNAgcd|S
NAeab〉 =

∑
i

∑
j

αiαj
î

2

ĵ

2
〈SN−1(A0

iiA
g
cd)

g|SN−1(A0
jjA

e
ab)

e〉. (15)

7 Summary

Based on the recurrence relations, the computer code we present here is able to calculate

matrix elements and overlaps. We can use the results of the code to calculate matrix elements

of tensor operators of physical interest, e.g. Hamiltonian and the electromagnetic transition

operators. Planned applications of the code include testing pair structures and extending

shell model calculations to nuclei which cannot easily be reached by conventional calculations,

and studying the mapping of shell model onto the Interactive Boson Model[Reference!], which

treats pairs of nucleons as composite bosons.

8 Acknowledgements

This work was supported by the US DOE under grant DE-FG02-95ER-40934.

11

References

[1] F.Q. Luo and M.A. Caprio, Nucl. Phys. A (2010).

[2] J. Suhonen, From Nucleons to Nucleus (Springer-Verlag, Berlin, 2007).

[3] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular

Momen- tum (World Scientific, Singapore, 1988).

[4] Y. K. Gambhir, A. Rimini, and T. Weber, Phys. Rev. 188, 1573 (1969).

[5] S. Pittel, P. D. Duval, and B. R. Barrett, Ann. Phys. (N.Y.) 144, 168 (1982).

12

