Characterizing r-Process Sites through Actinide Production

Erika M. Holmbeck, 1,2 Rebecca Surman, 1,2 Anna Frebel, 1,2,3 G. C. McLaughlin, 4,2 Matthew R. Mumpower, 1,2,5,6 Trevor M. Sprouse, 1 Toshihiko Kawano, 5,6 Nicole Vassh, 1,2

Metal-poor stars enhanced in r-process elements ("r-II stars") exhibit differences in scaled actinide abundances (Th/Eu). Is there a choice of nuclear or astrophysical input that can account for difference actinide levels?

Background: Actinides in Metal-Poor Stars

Metal-poor stars enhanced in r-process elements exhibit differences in scaled actinide abundances. Is there a choice of nuclear or astrophysical input that can account for difference actinide levels?

Research Question #1

Is the actinide-boost a nuclear effect (e.g., from fission)? If so, what choice of nuclear input can reproduce the observational actinide-boost signature?

Method: ADM Model

The “Actinide-Dilution with Matching” model is a Monte Carlo method that uses r-II abundances to build empirical mass distributions characterizing ejecta from r-process events.

Conclusion #2

There is no point at which the actinide-boost "turns on." Allowing variations in a distribution of r-process ejecta can reproduce all levels of actinide variation in metal-poor stars [4]. More detailed nuclear physics input can help constrain and characterize the r-process ejecta.

Constraints on r-Process Ejecta

Fig 1. Three examples of r-II abundance patterns with a range of Th/Eu levels, including the lowest (Ret II, [1]) and the highest (J0954+5246 [2]) measured.

Fig 2. Final abundance patterns using four variations on nuclear input (top) and a mixture of astrophysical conditions (Ye, bottom) compared to an actinide-boost star.

Fig 3. The fraction of ejected low-Ye material from an r-process event vs. increasing actinide abundance. One site can reproduce all actinide abundances yet observed.
