The expected yield of exoplanets is a useful metric for designing future exoplanet-imaging missions. Two primary technologies considered for these future missions, coronagraphs and starshades, greatly differ in their implementation and limitations, and as a result their scientific return. I will discuss the pros and cons of these technologies, how we perform high fidelity mission simulations, and show estimates for the exoplanet yields of a wide range of future direct-imaging missions. Finally, I will discuss astrophysical uncertainties, lessons learned, and prevent a simple framework quantitatively relating the yield of a mission to the age-old question, “Is there life elsewhere in the universe?”