
MECHANIC & THERMODYNAMICS PRELIM EXAM
2024 TEST QUESTION BANK

Department of Physics and Astronomy, University of Notre Dame

Note: The preliminary examination problems will be drawn from this set. While
the spirit and methodology of the problems will be unchanged, some specifics (an

initial condition, what observables are asked for, etc.) may change.
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1.) A damped oscillator satisfies mẍ + bẋ + kx = 0, where Fdamp = −bẋ is the
damping force.

a.) Find the rate of change of the energy E = 1
2
mẋ2+ 1

2
kx2 (by straightforward

differentiation)

b.) Show that dE/dt is the rate at which energy is dissipated by Fdamp..
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2.) The potential energy of a one-dimensional mass m at a distance r from the
origin is

U(r) = U0

( r

R
+ λ2 R

r

)
for 0 < r < ∞, with U0, R and λ all positive constants.

a.) Find the equilibrium position r0.

b.) Let x be the distance from equilibrium and show that, for small x, the PE
has the form U = const + 1

2
k x2.

c.) What is the angular frequency of small oscillations?
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3.) Write down the Lagrangian for a cylinder (mass m, radius R, and moment of
inertia I ) that rolls without slipping straight down an inclined plane which is at
an angle α from the horizontal. Use as your generalized coordinate the cylinder’s
distance x measured down the plane from its starting point. Write down the
Lagrange equation and solve it for the cylinder’s acceleration ẍ. Remember that
T = 1

2
mv2 + 1

2
Iω2, where v is the velocity of the center of mass and ω is the

angular velocity.
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4.) The figure below shows a simple pendulum (mass m, length ℓ) whose point of
support P is attached to the edge of a wheel (center O, radius R) that is forced
to rotate at a fixed angular velocity ω. At t = 0, the point P is level with O on
the right.

a.) Write down the Lagrangian for the system. [Hint: Be careful with the
kinetic energy T . A safe way to get the velocity right is to write down the
position of the bob at time t, and then differentiate.]

b.) Derive the equation of motion for the angle ϕ.

c.) Does your answer make sense in the limit ω → 0? Explain your reasoning.
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5.) A smooth wire is bent into the shape of a helix, with cylindrical polar coor-
dinates ρ = R and z = λϕ, where R and λ are constants and the z axis is
vertically up (and gravity vertically down).

a.) Using z as your generalized coordinate, write down the Lagrangian for a
bead of mass m threaded on the wire.

b.) Find the Lagrange equation and hence the bead’s vertical acceleration z̈.

c.) In the limit that R → 0, what is z̈?

6



6.) Consider the simple Atwood machine shown below.

a.) Write down the Lagrangian of the system in terms of a suitably chosen
generalized coordinate. Take the pulley to have radius R, and include the
effects of its moment of inertia I.

b.) Use the Lagrangian to find the acceleration of the system.
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7.) A small cart (mass m ) is mounted on rails inside a large cart. The two are
attached by a spring (force constant k ) in such a way that the small cart is in
equilibrium at the midpoint of the large. The distance of the small cart from
its equilibrium is denoted x and that of the large one from a fixed point on the
ground is X, as shown below.

 

 
 
Equations of motion 
 

 
 

The large cart is now forced to oscillate such that X = A cosωt, with both A
and ω fixed. Set up the Lagrangian for the motion of the small cart and show
that the Lagrange equation has the form

ẍ+ ω2
0x = B cosωt

where ωo is the natural frequency ω0 =
√

k/m and B is a constant.
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8.) Calculate the motion followed by a mass dropped from rest at the surface of a
uniform density planet mass M . through a hole that extends through the center
of the earth through to the other side of the planet. Ignore air resistance, the
rotation of the planet. Give the general formula in terms of Newton’s constant,
the radius, and the mass of the planet for the time it takes the object to reach
the other side.
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9.) A rifle fires a bullet straight up with velocity v0. The bullet rises to a certain
height, and then falls back to the ground.

a.) In the case of no air resistance, determine the height H0 and the speed of
the bullet, vground, when it returns.

b.) Now add air resistance assuming the magnitude of the force is F = mαv2,
where v is the velocity. Consider the upward trajectory, and express the
equation of motion terms of the variable u(x) = v2(x).

c.) Solve the equation of motion to determine the height H that the bullet
reaches in the presence of air resistance.

d.) Show that in the limit α → 0, H → H0.
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10.) A particle of mass m is performing one-dimensional motion subject to the force
function F (x) = −F0sin(cx). At t = 0 the particle’s position is x(0) = x0 = 0
and its velocity is v(0) = v0.

a.) Find the potential energy as a function of x and sketch it. [Hint: adjust
the constant term in the potential so that it vanishes at x = 0]

b.) Find the velocity as a function of x.

c.) Find the condition on the initial velocity v0 for which the motion is peri-
odic.

d.) Find the turning points for the periodic motion.

e.) Suppose that v0 is so small that the periodic motion can be treated as a
harmonic oscillator. Find the period of these oscillations and the oscillation
amplitude.
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11.) A rigid body consists of three equal masses (m) fastened at the positions
(a, 0, 0), (0, a, 2a), and (0, 2a, a).

a.) Find the inertia tensor I.

b.) Find the principal moments and a set of orthogonal principal axes.
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12.) A solid ball of radius R has its center of mass at rest, but is spinning about
a horizontal axis with angular speed ω0 as shown in the figure below. The
coefficient of sliding friction between the ball and the table on which it rests
is µ. At t = 0, the ball starts moving to the right, with combined linear and
rotational motion.

R

ω0

a.) What are the forces and torques on the system?

b.) Determine the time T when the ball rolls without slipping, v(T ) = Rω(T ).

c.) How far has the ball traveled in this time?
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13.) The center of a long frictionless rod is pivoted at the origin and the rod is
forced to rotate at a constant angular velocity Ω in a horizontal plane. The
figure below shows the top view.

̂x

Ω

̂y

Write down the equation of motion for a bead that is threaded on the rod, using
the coordinates x and y of a frame that rotates with the rod (with x along the
rod and y perpendicular to it). Solve for x(t). What is the role of the centrifugal
force? What of the Coriolis force?
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14.) A high-speed train is traveling at a constant speed v on a straight, horizontal
track across the South Pole. See figure below, where Ω is the Earth’s angular
velocity. Given the Coriolis force, find the angle between a plumb line suspended

⃗v

Ω⊗

from the ceiling inside the tram and another inside a hut on the ground. In
what direction is the plumb line on the train deflected?
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15.) A bead of mass m is threaded on a frictionless wire that is bent into a helix with
cylindrical polar coordiuates (ρ, ϕ, z) satisfying z = cϕ and ρ = R, with c and
R constants. The z axis points vertically up and gravity vertically down. Using
ϕ as your generalized coordinate, write down the kinetic and potential energies,
and hence the Hamiltonian H as a function of ϕ and its conjugate momentum
p. Write down Hamilton’s equations and solve for ϕ̈ and hence z̈. Explain your
result in terms of Newtonian mechanics and discuss the special case that R = 0.
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16.) Consider a particle of mass m moving in two dimensions, subject to a force F =
−kxx̂+Kŷ, where k andK are positive constants. Write down the Hamiltonian
and Hamilton’s equations, using x and y as generalized coordinates. Solve the
latter and describe the motion.
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17.) Consider a point particle with mass m constrained to move on the friction-
less surface of a vertical cone defined in terms of cylindrical polar coordinates
(ρ, ϕ, z) by the constraint ρ = c z and z > 0. The particle is in a uniform
gravitational field with g⃗ = −gẑ.

a.) Write down the Hamiltonian of the system in terms of the cylindrical polar
coordinates (ρ, ϕ, z). Are there any ignorable/cyclic variables?

b.) Derive Hamilton’s equations of motion. Point out constants of motion
(conserved quantities) you encounter and the corresponding conservation
laws.

c.) Use the connection between the Hamiltonian and the energy E to show
that for any given solution there are maximum and minimum heights zmax

and zmin between which motion is confined. Use this result to describe the
motion of the mass on the cone.
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18.) Consider a planet orbiting the fixed sun. Take the plane of the planet’s orbit
to be the x̂ŷ plane, with the sun at the origin, and label the planet’s position
by polar coordinates (r, ϕ).

a.) Show that the planet’s angular momentum ℓ = mr2 ω, where ω = ϕ̇ is the
planet’s angular velocity about the sun.

b.) Show that the rate at which the planet ‘sweeps out area’ (meaning the
area dA in the plane covered by the position vector r⃗ in a time dt) is

dA

dt
=

1

2
r2 ω

and hence that dA
dt

= ℓ
2m

. Deduce Kepler’s second law (a line running from
the sun to the planet sweeps out equal areas of the ellipse in equal times)
.
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19.) a.) Find the normal frequencies, ω1 and ω2, for the two carts shown above,
assuming that m1 = m2 and k1 = 3k2/2.

b.) Find and describe the motion for each of the normal modes in turn.
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20.) Consider two identical plane pendulums (each of length L and mass m ) that
are joined by a massless spring (force constant k ) as shown in the figure below.
The pendulums’ positions are specified by the angles ϕ1 and ϕ2 shown. The
natural length of the spring is equal to the distance between the two supports,
so the equilibrium position is at ϕ1 = ϕ2 = 0 with the two pendulums vertical.

a.) Write down the total kinetic energy and the gravitational and spring po-
tential energies. [Assume that both angles remain small at all times. This
means that the extension of the spring is well approximated by L (ϕ2 − ϕ1).]
Write down the Lagrange equations of motion.

b.) Find and describe the normal modes for these two coupled pendulums.
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21.) a.) Using elementary Newtonian mechanics find the period of a mass m1 in a
circular orbit of radius r around a fixed mass m2.

b.) Using the separation into CM and relative motions, find the corresponding
period for the case that m2 is not fixed and the masses circle each other a
constant distance r apart. Discuss the limit of this result if m2 → ∞.

c.) What would be the orbital period if the earth were replaced by a star of
mass equal to the solar mass, in a circular orbit, with the distance between
the sun and star equal to the present earth-sun distance? (The mass of
the sun is more than 300,000 times that of the earth.)
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22.) Conider the following cycle for an ideal monoatomic gas. Starting from an initial
pressure and an initial volume (P1, V1) we perform a compression at constant
volume (P2, V2), then an expansion at constant pressure (P3, V3), followed by an
adiabatic expansion (P4, V4) and finishing with an isothermal compression.

a.) Draw the PV diagram

b.) Is the pressure P4 bigger or smaller than P1 ? Explain your reasoning.

c.) Calculate W,Q and ∆U for each of the four processes.
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23.) Starting with the multiplicity of an Einstein Solid:

Ω(q,N) =

(
q +N − 1

q

)
a.) Calculate the entropy as a function of the energy U and N .

b.) Calculate the temperature as a function of U and N .

c.) Calculate the heat capacity. Explain the behavior at low and high tem-
perature.
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24.) Lets imagine an ideal monoatomic gas that undergoes a Carnot cycle:

a.) Explain each of the steps and draw the PV diagram.

b.) For each of the steps calculate ∆U,Q,W and the efficiency of the engine.

c.) Draw the ST diagram.
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25.) a.) Find a relation between the heat capacity at constant V and at constant
P (CV vs. CP ). Verify that it is valid for an ideal gas. Hint: Write the
entropy as a generic function of T and P and then suppose that P is a
function of T and V

b.) Find a relation between κT (compressibility at constant T ) and κS (com-
pressibility at constant S). Verify that it is valid for an ideal gas. Hint:
You can use a similar approach as the previous one

c.) How does the temperature change with pressure in the throttling process?
Apply the formula for an ideal monoatomic gas.
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26.) A cylindrical container of initial volume V0 contains N atoms of a classical ideal
gas at temperature T . One end of the container is movable, and so we can
compress the gas slowly, reducing the volume of the gas by two percent while
keeping the temperature of the gas the same.

a.) What is the change in entropy of the confined gas?

b.) How much work do we do in compressing the gas?

c.) How much energy was absorbed by the environment (through heating)?

d.) What was the entropy change to the environment?
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27.) A copper penny, initially at temperature Ti is placed in contact with a large
block of ice that serves as a heat reservoir and has a constant temperature Tres

(well below freezing). Take the penny’s heat capacity to have the constant value
C, and specify Ti ̸= Tres (by a finite amount). The following questions pertain
after the joint system has come to thermal equilibrium.

a.) What are the entropy changes of the penny and of the ice block?

b.) What sign does the total change in entropy have [according to your calcu-
lations in part a.)]?

c.) Is the sign independent of whether the penny was hotter or colder than
the ice block? Explain your answer.
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28.) Two identical bubbles of gas form at the bottom of a lake, then rise to the
surface. Because the pressure is much lower at the surface than at the bottom,
both bubbles expand as they rise. However, bubble A rises very quickly so that
no heat is exchanged between it and the water. Meanwhile, bubble B rises
slowly (impeded by a tangle of seaweed), so that it always remains in thermal
equilibrium with the water (which you can assume has the same temperature
everywhere).

a.) How does the temperature of the bubbles change as they rise in the water?

b.) How does the entropy change? Explain your reasoning.

c.) Which of the two bubbles is larger by the time they reach the surface?
Explain your reasoning.
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29.) Imagine some helium in a cylinder with an initial volume of 1 liter and an initial
pressure of 1 atm. Somehow the helium is made to expand to a final volume of
3 liters, in such a way that its pressure rises in direct proportion to its volume.

a.) Sketch a graph of pressure vs. volume for this process.

b.) Calculate the work done on the gas during this process, assume that there
are no ‘other’ types of work being done.

c.) Calculate the change in the helium’s energy content during this process.

d.) Calculate the amount of heat added or removed from the helium during
this process.
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30.) a.) Which of the following expressions:

S = Nk sin

(
U3/2V

αN5/2

)
S = Nk

(
log

(
U3/2V

αN5/2

)
+

5

2

)
S = S0−Nk

U3/2V

αN5/2

could be interpreted as entropy? Explain your answer.

b.) Calculate the units of α.

c.) For the expression(s) that can be interpreted as entropy, calculate P, T
and µ

31



31.) Given the following Gibbs free energy:

G = −k TN log
(a T 5/2

P

)
where a is a constant (with dimension to make the argument of the logarithm
dimensionless). Recall that G(p, T ) = U + PV − TS. Compute:

a.) the entropy,

b.) the heat capacity at constant pressure CP ,

c.) the equation of state (the connection among V , P , N and T ),

d.) the average energy ⟨E⟩.
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