Particle Physics Seminar: Prof. Liang Dai, UC Berkeley

-

Location: zoom

Uncovering Small-Scale Matter Structures with Novel Gravitational Lenses

Prof. Liang Dai, UC Berkeley

The physical nature of the astrophysical dark matter (DM) is a fundamental question in cosmology. The clustering structure of DM on sub-galactic scales is key to distinguishing between various viable DM models which all make successful predictions about the large-scale structure and galaxy formation, but empirical tests have been fundamentally hindered by the lack of electromagnetic tracers of sub-galactic structures. In this talk, I introduce novel and practical gravitational-lensing based methods which can be employed to push forward this research frontier. I will first discuss the new phenomenon of extremely magnified cosmological sources as deep imaging of strong lensing clusters has recently started to uncover, and explain how this phenomenon can be exploited as a sensitive probe of compact halo objects, non-luminous DM subhalos smaller than those who host dwarf galaxies, and even (sub-)planetary mass DM minihalos as expected in the axion DM scenario. I will also discuss exploiting lensing of gravitational waves from merging black holes to probe small-scale DM lenses. In particular, I will explain how one can extract unique information by observing wave diffraction of gravitational waves, which would be typically infeasible with electromagnetic sources.

All interested persons are invited to attend remotely—email physics@nd.edu for information.

Hosted by Prof. Tsai