ND physicists collaborate to create a novel nanostructure that reveals a long-sought particle

Author: Shelly Goethals

Two Notre Dame physicists, Xinyu Liu and Jacek Furdyna, collaborated with Purdue physicist Leonid Rokhinson on constructing a novel nanostructure that allowed them to observe a long-sought-after particle referred to as Majorana fermion.  The existence of this particle has been predicted by Ettore Majorana1 in the 1930s, but until now has eluded observation. In a Purdue press release on the subject, Professor Rokhinson has pointed out that “The search for this particle is for condensed-matter physicists what the Higgs boson search was for high-energy particle physicists. It is a very peculiar object, because it is a fermion, and yet it is its own antiparticle, with zero mass and zero charge.”2

The long-standing interest in finding the Majorana particle has been two-fold. First, from the point of view of fundamentals of physics, the particle has new and completely unique properties, that range from its zero mass to the type of statistics which it obeys. And second, precisely because of its novel statistical properties (technically referred to as “non-Abelian”), it holds great promise for fault-tolerant quantum computation – a field that is expected to revolutionize the way computing will be done in the future. 

The challenge in detecting the Majorana particle was to find a suitable solid-state structure in which it could reside.  The team jointly designed a one-dimensional hybrid system (nanowire) comprised of a semiconductor (in this case indium antimonide) and a superconductor (niobium). The unique properties of this hybrid architecture then enabled the observation of the so-called fractional Josephson effect, a direct signature of the Majorana particles.

“A key for achieving a structure of sufficient quality to display this signature was the process of molecular beam epitaxy,” Furdyna said, “since that method of fabrication allows us to prepare complex materials systems with unprecedented purity and crystalline quality, along with atomic-scale control of the topology of the structure. The quality of the hybrid structures so fabricated not only enabled our team to detect the signature of Majorana particles via the fractional Josephson effect, but assured the reliability of the quantitative interpretation of the experiments.” 

The important critical step which the discovery of Majorana fermions offer toward quantum computation arises from the fact that they can be used to encode information in an extremely robust manner, in a way that is protected from so-called decoherence due to local noise. Specifically, the Rokhinson-Liu-Furdyna experiment was aimed at demonstrating the existence of a pair of Majorana particles at the ends of the hybrid semiconductor/superconductor nanowire. The appearance of these particles is due to the specific interactions between groups of electrons and atoms in the crystal lattice of this nanowire. If quantum information is stored in the Majorana state, the information storage is not in the individual carriers, but in their relative configuration as a whole; in other words, the information is stored nonlocally, and is therefore significantly more robust.

“The information stored in the Majorana particles” Xinyu Liu said “is protected from local environment and perturbations (noise). Here it is important that Majorana fermions are stable, even in the presence of defects that normally exist in solids, because electrons in the wire cannot modify the state of the Majorana fermions by scattering. In this regard, quantum information scientists believe that the realization of Majorana fermions in condensed matter represents robust ‘topological’ qubits, thus opening new possibilities for quantum computation.”

Speaking of the unique property of Majorana particles and their interest for quantum computation, Rokhinson added that “Other particles are interchangeable, and if two electrons trade places, it is as if nothing had happened; but when you swap two Majorana fermions, it leaves a mark by altering their quantum mechanical state. This change in state is like a passport book full of stamps; it provides a record of exactly how the particle arrived at its current destination.”2

Xinyu Liu added that having a crystalline structure such as that constructed by the Notre Dame/Purdue team, which can be used to “house” Majorana particles and to control them by electric and magnetic fields, already represents an important practical step toward realizing of the distant – but now more realistic – goal of achieving hardware for quantum computation.

An article describing this discovery, including the details of the fractional Josephson effect and its interpretation, will appear in the coming issue of the journal Nature Physics, and is now available online3. Co-authors include Leonid Rokhinson, Xinyu Liu, and Jacek Furdyna. The work was partially supported by grants from the Army Research Office and the National Science Foundation.

1 Majorana “Teoria simmetrica dell’elettrone e del positrone” (in Italian). Nuovo Cimento 14: 171 (1937)

2http://www.purdue.edu/newsroom/releases/2012/Q3/signature-of-long-sought-particle-that-could-revolutionize-quantum-computing-seen-by-purdue-physicist.html

3http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys2429.html